
Package: nadiv (via r-universe)
October 25, 2024

Type Package

Title (Non)Additive Genetic Relatedness Matrices

Version 2.18.0

URL https://github.com/matthewwolak/nadiv

BugReports https://github.com/matthewwolak/nadiv/issues

Depends R (>= 4.2.0), Matrix

Suggests parallel

Enhances MCMCglmm, asreml

Imports graphics, methods, stats

License GPL (>=2)

LazyData yes

NeedsCompilation yes

Description Constructs (non)additive genetic relationship matrices,
and their inverses, from a pedigree to be used in linear mixed
effect models (A.K.A. the 'animal model'). Also includes other
functions to facilitate the use of animal models. Some
functions have been created to be used in conjunction with the
R package 'asreml' for the 'ASReml' software, which can be
obtained upon purchase from 'VSN' international
(<https://vsni.co.uk/software/asreml>).

Encoding UTF-8

RoxygenNote 7.3.1

Repository https://matthewwolak.r-universe.dev

RemoteUrl https://github.com/matthewwolak/nadiv

RemoteRef HEAD

RemoteSha a2d25f23a5d717967ad7e8e894d72f2df59cbfdc

1

https://github.com/matthewwolak/nadiv
https://github.com/matthewwolak/nadiv/issues
https://vsni.co.uk/software/asreml

2 Contents

Contents
nadiv-package . 3
aic . 3
aiCI . 4
aiFun . 5
constrainFun . 7
drfx . 8
F2009 . 9
FG90 . 10
findDFC . 10
founderLine . 11
genAssign . 13
geneDrop . 14
ggcontrib . 15
ggTutorial . 18
grfx . 19
LRTest . 21
makeA . 23
makeAA . 24
makeAinv . 25
makeAstarMult . 29
makeD . 31
makeDomEpi . 34
makeDsim . 35
makeM . 38
makeMinv . 39
makeS . 40
makeTinv . 42
Mrode2 . 44
Mrode3 . 45
Mrode9 . 45
numPed . 46
pcc . 47
prepPed . 48
prunePed . 50
Q1988 . 51
simGG . 52
simPedDFC . 56
simPedHS . 57
simPedMCN . 58
sm2list . 60
varTrans . 60
warcolak . 61
Wray90 . 64

Index 65

nadiv-package 3

nadiv-package (Non)Additive Genetic Relatedness Matrices in Animal Model Analy-
ses

Description

Constructs (non)additive genetic relationship matrices, and their inverses, from a pedigree to be
used in linear mixed effect models (A.K.A. the ’animal model’). Also includes other functions to
facilitate the use of animal models. Some functions have been created to be used in conjunction with
the R package for ASReml software, which can be obtained upon purchase from VSN international
(<https://www.vsni.co.uk/software/asreml>).

Author(s)

Matthew Wolak <matthewwolak@gmail.com>

See Also

Useful links:

• https://github.com/matthewwolak/nadiv

• Report bugs at https://github.com/matthewwolak/nadiv/issues

aic Akaike Information Criterion

Description

Calculates AIC/AICc values, AIC differences, Likelihood of models, and model probabilities.

Usage

aic(logLik, fp, n = NULL)

Arguments

logLik A vector of model log-Likelihoods

fp A vector containing the numbers of free parameters of each model included in
the logLik vector

n An optional vector of sample sizes for each model. Used to calculate AICc
(small sample unbiased AIC).

Details

Calculations and notation follows chapter 2 of Burnham and Anderson (2002).

https://github.com/matthewwolak/nadiv
https://github.com/matthewwolak/nadiv/issues

4 aiCI

Value

a list:

AIC vector containing AIC/AICc (depending on value of n)

delta_AIC vector containing AIC differences from the minimum AIC(c)

AIClik vector containing likelihoods for each model, given the data. Represents the relative
strength of evidence for each model.

w Akaike weights.

Author(s)

<matthewwolak@gmail.com>

References

Burnham, K.P. and D.R. Anderson. 2002. Model Selection and Multimodel Inference. A Practical
Information-Theoretic Approach, 2nd edn. Springer, New York.

Examples

aic(c(-3139.076, -3136.784, -3140.879, -3152.432), c(8, 7, 8, 5))

aiCI Confidence Intervals for Variance Components

Description

Produces the 1-alpha Upper and Lower Confidence Limits for the variance components in an
ASReml-R model.

Usage

aiCI(asr.model, Dimnames = NULL, alpha = 0.05)

Arguments

asr.model Object from a call to asreml

Dimnames A vector of characters if names are desired for the output. If not specified, the
default labels from the asreml object will be used.

alpha A numeric value indicating the level of Type I error for constructing the Confi-
dence Intervals.

Details

Variances from the inverse of the Average Information matrix of an ASReml model are translated
according to the varTrans function and used in constructing the 1-alpha Confidence Interval.

aiFun 5

Value

A matrix is returned with a row for each variance component. The three columns correspond to the
Lower Confidence Limit, estimate from the asreml model, and Upper Confidence Limit for each
variance component.

Note

The vector of Dimnames should match the same order of variance components specified in the
model.

Author(s)

<matthewwolak@gmail.com>

See Also

aiFun

Examples

Not run:
library(asreml)
ginvA <- ainverse(warcolak)
ginvD <- makeD(warcolak[, 1:3])$listDinv

attr(ginvD, "rowNames") <- as.character(warcolak[, 1])
attr(ginvD, "INVERSE") <- TRUE

warcolak$IDD <- warcolak$ID
warcolak.mod <- asreml(trait1 ~ sex,
random = ~ vm(ID, ginvA) + vm(IDD, ginvD),

data = warcolak)
summary(warcolak.mod)$varcomp
aiCI(warcolak.mod)

End(Not run)

aiFun Sampling (co)variances

Description

This function returns the sampling (co)variances of the variance components fitted in an mixed
model solved using the Average Information algorithm

Usage

aiFun(model = NULL, AI.vec = NULL, inverse = TRUE, Dimnames = NULL)

6 aiFun

Arguments

model A model object returned by a call to the asreml function.

AI.vec A numeric vector of the Average Information matrix. The order must be the
row-wise lower triangle of the matrix (including the diagonal).

inverse A logical indicating whether the elements of the inverse Average Information
matrix are being provided. If FALSE, the Average Information matrix (and not
its inverse) is being supplied.

Dimnames A vector of characters if names are desired for the output (co)variance matrix.
If not specified, either the default labels from the asreml object will be used or
the rows and columns will be unlabeled.

Details

The inverse of the Average Information matrix provides the sampling (co)variance of each (co)variance
component in the random portion of the mixed model. If a model from the ASReml-R func-
tion is supplied (model is not NULL), this function extracts the inverse of the AI matrix from
an ASReml-R model and organizes it so that the sampling covariances between random terms are
the off-diagonals and the sampling variances of random terms are located along the diagonal. The
order of the variances along the diagonal is the same as the order entered in the random section of
the asreml function. This is also the same order as the rows of a call to the summary function,
summary(model)$varcomp.

If model is NULL then AI.vec should contain the vector of values from an Average Information
matrix. The function will then reconstruct this matrix, invert it, and supply the sampling (co) vari-
ances for the random terms in the model as described above. Note, either model or AI.vec must be
supplied, but not both.

Value

A matrix of k x k dimensions is returned, if k is the number of (co)variance components estimated
in the model. Sampling covariances are above and below the diagonal while variances are located
along the diagonal. If Dimnames is specified, the row and column names are assigned according the
vector of names in this argument.

Note

The vector of Dimnames should match the same order of variance components specified in the
model.

Author(s)

<matthewwolak@gmail.com>

References

Gilmour, A.R., Gogel, B.J., Cullis, B.R., & Thompson, R. 2009. ASReml User Guide Release 3.0.
VSN International Ltd., Hemel Hempstead, UK.

constrainFun 7

Examples

Not run:
library(asreml)
ginvA <- ainverse(warcolak)
ginvD <- makeD(warcolak[, 1:3])$listDinv

attr(ginvD, "rowNames") <- as.character(warcolak[, 1])
attr(ginvD, "INVERSE") <- TRUE

warcolak$IDD <- warcolak$ID
warcolak.mod <- asreml(trait1 ~ sex,
random = ~ vm(ID, ginvA) + vm(IDD, ginvD),

data = warcolak)
summary(warcolak.mod)$varcomp
aiFun(model = warcolak.mod, Dimnames = c("Va", "Vd", "Ve"), inverse = TRUE)

End(Not run)

output <- c(7.3075921, 7.0635161, 12.3423380, 1.9539486, 2.7586340, 0.6626111)
aiFun(AI.vec = output, inverse = FALSE, Dimnames = c("Va", "Vd", "Ve"))

constrainFun Fix a Model Parameter and Conduct Likelihood Ratio Test

Description

Given a model object from asreml and a range of estimates of the parameter, the function will sup-
ply the likelihood ratio test statistic for the comparison of the full model to one where the parameter
of interest is constrained.

Usage

constrainFun(parameter.val, full, fm2, comp, G, mit = 600)

Arguments

parameter.val a value for which the log-Likelihood of a model is to be calculated

full the full model asreml object

fm2 starting values for the full model

comp which variance component to constrain

G logical, indicating if the component is part of the G structure

mit numeric, indicating maximum number of iterations for the constrained asreml
model

Value

A vector of length 1 returning either a numeric value corresponding to the likelihood ratio test
statistic or else the missing value indicator NA.

8 drfx

Author(s)

<matthewwolak@gmail.com>

See Also

See also LRTest

drfx Simulated design random effects

Description

This function simulates effects for random terms in a linear mixed model based on design matrices.
The intended purpose is for simulating environmental effects from a pedigree.

Usage

drfx(G, fac, dataf, ...)

Arguments

G The variance-covariance matrix to model the effects after

fac A character indicating the factor in dataf with which to construct the design
matrix

dataf A dataframe with fac in it

... Arguments to be passed to the internal use of grfx

Details

If G = x, where ’x’ is a single number, then ’x’ should still be specified as a 1-by-1 matrix (e.g.,
matrix(x)). Note, the G-matrix should never have a structure which produces a correlation exactly
equal to 1 or -1. Instead, covariances should be specified so as to create a correlation of slightly less
than (greater than) 1 (-1). For example: 0.9999 or -0.9999.

Value

fx A matrix with ’d’ columns of random effects

Z A design matrix (of the format ’Matrix’) from which the random effects in fx
were assigned

Author(s)

<matthewwolak@gmail.com>

See Also

grfx

F2009 9

Examples

Create maternal common environment effects for 2 traits
with perfectly correlated effects

Gmat <- matrix(c(10, 7.071, 7.071, 5), 2, 2)
cfx <- drfx(G = Gmat, fac = "Dam", dataf = warcolak[1:200,])

F2009 Pedigree adapted from Fikse 2009 with genetic groups and fuzzy clas-
sification

Description

Pedigree adapted from Fikse 2009 with genetic groups and fuzzy classification

Usage

F2009

Format

A data.frame with 16 observations on the following 11 variables:

id a factor with levels indicating the unique individuals (including phantom parents) and genetic
groups

dam a factor of observed maternal identities
sire a factor vector of observed paternal identities
damGG a factor of maternal identities with genetic groups inserted instead of NA
sireGG a factor of paternal identities with genetic groups inserted instead of NA
phantomDam a factor of maternal identities with phantom parents inserted instead of NA
phantomSire a factor of paternal identities with phantom parents inserted instead of NA
group a factor of genetic groups to which each phantom parent belongs
g1 a numeric vector with probabilities of group g1 membership for each phantom parent
g2 a numeric vector with probabilities of group g2 membership for each phantom parent
g3 a numeric vector with probabilities of group g3 membership for each phantom parent

Source

Fikse, F. 2009. Fuzzy classification of phantom parent groups in an animal model. Genetics Selec-
tion Evolution 41:42.

Examples

data(F2009)
str(F2009)

10 findDFC

FG90 Pedigree, adapted from Table 1 in Fernando & Grossman (1990)

Description

Pedigree, adapted from Table 1 in Fernando & Grossman (1990)

Usage

FG90

Format

A data.frame with 8 observations on the following 4 variables:

id a factor with levels 1 2 3 4 5 6 7 8

dam a factor with levels 2 4 6

sire a factor with levels 1 3 5

sex a factor with levels 0 1

Source

Fernando, R.L. & M. Grossman. 1990. Genetic evaluation with autosomal and X-chromosomal
inheritance. Theoretical and Applied Genetics 80:75-80.

Examples

data(FG90)
str(FG90)

findDFC Finds the double first cousins in a pedigree

Description

Given a pedigree, all pairs of individuals that are double first cousins are returned.

Usage

findDFC(
pedigree,
exact = FALSE,
parallel = FALSE,
ncores = getOption("mc.cores", 2L)

)

founderLine 11

Arguments

pedigree A pedigree with columns organized: ID, Dam, Sire

exact A logical statement indicating if individuals who are exactly double first cousins
are to be identified

parallel A logical statement indicating if parallelization should be attempted. Note, only
reliable for Mac and Linux operating systems.

ncores Number of cpus to use, default is maximum available

Details

When exact = TRUE, only those individuals whose grandparents are completely unrelated will be
identified as double first cousins. When exact = FALSE, as long as the parents of individuals i and
j are two sets of siblings (i.e., either sires full brothers/dams full sisters or two pairs of opposite sex
full sibs) then i and j will be considered double first cousins. In the event where the grandparents of
i and j are also related, exact = FALSE will still consider i and j full sibs, even though genetically
they will be more related than exact = TRUE double first cousins.

parallel = TRUE should only be used on Linux or Mac OSes (i.e., not Windows).

Value

a list:

PedPositionList gives the list of row numbers for all the pairs of individuals that are related as
double first cousins.

DFC gives the list of IDs, as characters, for all the pairs of individuals that are related as double
first cousins.

FamilyCnt If two individuals, i and j, are double first cousins, then i’s siblings will also be dou-
ble first cousins with j’s siblings. Therefore, this is the total number of family pairs where
offspring are related as double first cousins.

Author(s)

<matthewwolak@gmail.com>

founderLine Identifies the matriline or patriline to which each individual in a pedi-
gree belongs

Description

For every individual in a pedigree, the function identifies either the one female or male ancestor
that is a founder (defined here as an individual identity in the pedigree for which both dam and sire
information are missing).

12 founderLine

Usage

founderLine(pedigree, sex)

Arguments

pedigree A pedigree where the columns are ordered ID, Dam, Sire, Sex

sex Character indicating the column name in pedigree identifying either the dam
(for matriline) or sire (for patriline) identities

Details

Missing parents (e.g., base population) should be denoted by either ’NA’, ’0’, or ’*’.

Individuals with a missing parent for the column identified by the ’sex’ argument are assigned them-
selves as their founder line. Thus, the definition of the founder population from a given pedigree is
simply all individuals with missing parents (and in this case just a single missing parent classifies
an individual as a founder).

Value

A vector of length equal to the number of rows in the pedigree

Author(s)

<matthewwolak@gmail.com>

Examples

founderLine(FG90, sex = "dam") # matriline from this example pedigree

#Create random pedigree, tracking the matrilines
Then compare with founderLine() output
K <- 8 # No. individuals per generation (KEEP and even number)
gen <- 10 # No. of generations
datArr <- array(NA, dim = c(K, 5, gen))
dimnames(datArr) <- list(NULL,

c("id", "dam", "sire", "sex", "matriline"), NULL)
initialize the data array
datArr[, "id",] <- seq(K*gen)
datArr[, "sex",] <- c(1, 2)
femRow <- which(datArr[, "sex", 1] == 2) # assume this is same each generation
(Why K should always be an even number)
datArr[femRow, "matriline", 1] <- femRow
males have overlapping generations, BUT females DO NOT
for(g in 2:gen){

datArr[, "sire", g] <- sample(c(datArr[femRow-1, "id", 1:(g-1)]),
size = K, replace = TRUE)

gdams <- sample(femRow, size = K, replace = TRUE)
datArr[, c("dam", "matriline"), g] <- datArr[gdams, c("id", "matriline"), g-1]

}
ped <- data.frame(apply(datArr, MARGIN = 2, FUN = function(x){x}))

genAssign 13

nrow(ped)
#Now run founderLine() and compare
ped$line <- founderLine(ped, sex = "dam")
stopifnot(identical(ped$matriline, ped$line),
sum(ped$matriline-ped$line, na.rm = TRUE) == 0,
range(ped$matriline-ped$line, na.rm = TRUE) == 0)

genAssign Generation assignment

Description

Given a pedigree, the function assigns the generation number to which each individual belongs.

Usage

genAssign(pedigree, ...)

Default S3 method:
genAssign(pedigree, ...)

S3 method for class 'numPed'
genAssign(pedigree, ...)

Arguments

pedigree A pedigree where the columns are ordered ID, Dam, Sire

... Arguments to be passed to methods

Details

0 is the base population.

Migrants, or any individuals where both parents are unknown, are assigned to generation zero. If
parents of an individual are from two different generations (e.g., dam = 0 and sire = 1), the individual
is assigned to the generation following the greater of the two parents (e.g., 2 in this example).

Value

A vector of values is returned. This vector is in the same order as the ID column of the pedigree.

Author(s)

<matthewwolak@gmail.com>

14 geneDrop

geneDrop Functions to conduct gene dropping through a pedigree

Description

Functions that perform and summarize gene dropping conducted on supplied pedigrees

Usage

geneDrop(
pedigree,
N,
parallel = FALSE,
ncores = getOption("mc.cores", 2L),
...

)

Default S3 method:
geneDrop(
pedigree,
N,
parallel = FALSE,
ncores = getOption("mc.cores", 2L),
...

)

S3 method for class 'numPed'
geneDrop(
pedigree,
N,
parallel = FALSE,
ncores = getOption("mc.cores", 2L),
...

)

Arguments

pedigree A pedigree with columns organized: ID, Dam, Sire.

N The number of times to iteratively trace alleles through the pedigree

parallel A logical indicating whether or not to use parallel processing. Note, this may
only be available for Mac and Linux operating systems.

ncores The number of cpus to use when constructing the dominance relatedness matrix.
Default is all available.

... Other arguments that can be supplied to alter what summaries are reported.

ggcontrib 15

Details

Missing parents (e.g., base population) should be denoted by either ’NA’, ’0’ , or ’*’.

parallel = TRUE should only be used on Linux or Mac operating systems (i.e., not Windows).

Founder allelic values (the alleles assigned to an individual’s maternal, paternal, or both haplotypes
when the maternal, paternal, or both parents are missing) are equivalent positive and negative integer
values corresponding to the maternal and paternal haplotypes, respectively. For example, if the first
individual in the pedigree has two unknown parents it will have the following two allelic values:
1=maternal haplotype and -1=paternal haplotype.

Value

a list:

IDs Original identities in the pedigree

maternal Simulated maternal haplotypes

paternal Simulated paternal haplotypes

numericPedigree Pedigree in class numPed for convenient post-processing of haplotypes

Author(s)

<matthewwolak@gmail.com>

See Also

makeDsim

Examples

geneDrop(Mrode2, N = 10)

ggcontrib Genetic group contribution

Description

Calculates the genomic contribution each genetic group makes to every individual in a pedigree

Usage

ggcontrib(pedigree, ggroups = NULL, fuzz = NULL, output = "matrix")

16 ggcontrib

Arguments

pedigree A pedigree where the columns are ordered ID, Dam, Sire

ggroups An optional vector of either: genetic group assignment for every individual or
just the unique genetic groups. fuzz must be NULL if an object is supplied to the
ggroups argument.

fuzz A matrix containing the fuzzy classification of phantom parents into genetic
groups. ggroups must be NULL if an object is supplied to the fuzz argument.

output Format for the output

Details

The specification of genetic groups is done in one of two approaches, either using fuzzy classifica-
tion or not.

Fuzzy classification enables phantom parents to be assigned to (potentially) more than one genetic
group (Fikse 2009). This method requires unique phantom parent identities to be included in the
pedigree for all observed individuals with unknown parents. For ’p’ phantom parents, ’p’ identities
should be listed as individuals in the first ’p’ rows of the pedigree and these should be the only
individuals in the pedigree with missing values in their Dam and Sire columns (denoted by either
’NA’, ’0’, or ’*’). The matrix supplied to the fuzz argument should have ’p’ rows (one for each
phantom parent) and ’r’ columns, where ’r’ is the number of genetic groups.

Non-fuzzy classification can handle the specification of genetic groups in three formats:

(1) similar to ASReml’s format for specifying genetic groups, the first ’r’ rows of the pedigree
(given to the pedigree argument) contain the label for each genetic group in the ID column and
indicate missing values for the Dam and Sire columns (denoted by either ’NA’, ’0’, or ’*’). No
object is supplied to the ggroups argument. All individuals in the pedigree must then have one of
the ’r’ genetic groups as parent(s) for each unknown parent. Note, a warning message indicating
In numPed(pedigree): Dams appearing as Sires is expected, since the dam and sire can be the
same for all individuals in the pedigree composing the base population of a genetic group.

(2) similar to Jarrod Hadfield’s rbv function arguments in the MCMCglmm package, for a pedigree of
dimension i x 3 (given to the pedigree argument), where ’i’ is the total number of individuals in
the pedigree, a similar vector of length ’i’ is given to the ggroups argument. This vector lists either
the genetic group to which each individual’s phantom parents belong or NA if the individual is not
to be considered part of one of the base populations (genetic groups). NOTE, this approach does not
allow phantom dams and phantom sires of a given individual to be from different genetic groups.

(3) similar to DMU’s format for specifying genetic groups. For a pedigree of dimension i x 3 (given
to the pedigree argument), where ’i’ is the total number of individuals in the pedigree, instead of
missing values for a parent, one of the ’r’ genetic groups is specified. A character vector of length
’r’ with unique genetic group labels is given to the ggroups argument. Note, that all individuals
with a missing parent should have a genetic group substituted instead of the missing value symbol
(i.e., either ’NA’, ’0’, or ’*’).

Value

Returns i x r genetic group contributions to all ’i’ individuals from each of the ’r’ genetic groups.
Default output is an object of class matrix (dense), but this format can be changed (e.g., "dgCMa-
trix" for a sparse matrix).

ggcontrib 17

Author(s)

<matthewwolak@gmail.com>

References

Fikse, F. 2009. Fuzzy classification of phantom parent groups in an animal model. Genetics, Selec-
tion, Evolution. 41:42.

Quaas, R.L. 1988. Additive genetic model with groups and relationships. Journal of Dairy Science.
71:1338-1345.

Examples

Use the pedigree from Quaas 1988 (See `data(Q1988)`)
##########################
Fuzzy classification

Fuzzy classification with complete assignment to one group
Q1988fuzz <- Q1988[-c(1:2), c("id", "phantomDam", "phantomSire")]
Qfnull <- matrix(c(1,0,0,1,0, 0,1,1,0,1), nrow = 5, ncol = 2,

dimnames = list(letters[1:5], c("g1", "g2")))
(Qfuzznull <- ggcontrib(Q1988fuzz, fuzz = Qfnull))

Should be identical to the non-fuzzy classification output
format (1) from above

(Q <- ggcontrib(Q1988[-c(3:7), c(1,4,5)]))
stopifnot(Qfuzznull == Q)

Fuzzy classification with arbitrary assignments
Qf <- matrix(c(1,0,0.5,0.5,0.5, 0,1,0.5,0.5,0.5), nrow = 5, ncol = 2,

dimnames = list(letters[1:5], c("g1", "g2")))
(Qfuzz <- ggcontrib(Q1988fuzz, fuzz = Qf))

Using the pedigree and fuzzy classification in Fikse (2009)
F2009fuzz <- data.frame(id = c(letters[1:7], LETTERS[1:6]),

dam = c(rep(NA, 7), "a", "c", "e", "A", "C", "D"),
sire = c(rep(NA, 7), "b", "d", "f", "B", "g", "E"))

Ff <- matrix(c(1,0,1,0,0,0,0.2,
0,1,0,0.6,0,0.3,0.4,
0,0,0,0.4,1,0.7,0.4),
nrow = 7, ncol = 3,
dimnames = list(letters[1:7], paste0("g", 1:3)))

Actual Q matrix printed in Fikse (2009)
Fikse2009Q <- matrix(c(0.5,0.5,0,0.5,0.1,0.3,

0.5,0.3,0.15,0.4,0.275,0.3375,
0,0.2,0.85,0.1,0.625,0.3625),
nrow = 6, ncol = 3,
dimnames = list(LETTERS[1:6], paste0("g", seq(3))))

Ffuzz <- ggcontrib(F2009fuzz, fuzz = Ff)
(diffFfuzz <- Ffuzz - Fikse2009Q)
Encountering some rounding error
stopifnot(length((drop0(diffFfuzz, tol = 1e-12))@x) == 0)

18 ggTutorial

##########################
Non-fuzzy classification

format (1) from above
Q1 <- Q1988[-c(3:7), c(1,4,5)]
(gg1 <- ggcontrib(Q1, ggroups = NULL)) # note the warning message which is typical

format (2) from above
Q2 <- Q1988[-c(1:7), 1:3]
arbitrarily assign individuals genetic groups for unknown parents
Means gg2 is NOT comparable to gg1 or gg3!
ggvec.in <- c("g1", "g2", "g1", NA)
(gg2 <- ggcontrib(Q2, ggroups = ggvec.in))

format (3) from above
Q3 <- Q1988[-c(1:7), c(1,4,5)]
gg3 <- ggcontrib(Q3, ggroups = c("g1", "g2"))

stopifnot(gg1 == gg3)

ggTutorial Simulated dataset used to analyze data with genetic group animal
models

Description

The dataset was simulated using the simGG function so that the pedigree contains a base popula-
tion comprised of founders and non-founder immigrants. These data are then used in the main
manuscript and tutorials accompanying Wolak & Reid (2017).

Usage

ggTutorial

Format

A data.frame with 6000 observations on the following 10 variables:

id an integer vector specifying the 6000 unique individual identities

dam an integer vector specifying the unique dam for each individual

sire an integer vector specifying the unique sire for each individual

parAvgU a numeric vector of the average autosomal total additive genetic effects (u) of each
individual’s parents

mendel a numeric vector of the Mendelian sampling deviations from parAvgU autosomal total
additive genetic effects that is unique to each individual

u a numeric vector of the total autosomal additive genetic effects underlying p

grfx 19

r a numeric vector of the residual (environmental) effects underlying p

p a numeric vector of phenotypic values

is an integer vector with 0 for individuals born in the focal population and 1 for individuals born
outside of the focal population, but immigrated

gen an integer vector specifying the generation in which each individual was born

Details

The dataset was simulated as described in the ‘examples’ section using the simGG function. Full
details of the function and dataset can be found in Wolak & Reid (2017).

The data.frame contains 6000 individuals across 15 generations. In each generation, the carrying
capacity is limited to 400 individuals, the number of mating pairs limited to 200 pairs, and 40
immigrants per generation arrive starting in the second generation.

The breeding values of the founders are drawn from a normal distribution with an expected mean of
0 and a variance of 1. The breeding values of all immigrants are drawn from a normal distribution
with an expected mean of 3 and variance of 1. Consequently, the expected difference between
mean breeding values in the founders and immigrants is 3. All individuals are assigned a residual
(environmental) deviation that is drawn from a normal distribution with an expected mean of 0 and
variance of 1.

Source

Wolak, M.E. & J.M. 2017. Accounting for genetic differences among unknown parents in microevo-
lutionary studies: how to include genetic groups in quantitative genetic animal models. Journal of
Animal Ecology 86:7-20. doi:10.1111/1365-2656.12597

Examples

set.seed(102) #<-- seed value used originally
library(nadiv)
create data using `simGG()`
ggTutorial <- simGG(K = 400, pairs = 200, noff = 4, g = 15,

nimm = 40, nimmG = seq(2, 14, 1), # nimmG default value
VAf = 1, VAi = 1, VRf = 1, VRi = 1, # all default values
mup = 20, muf = 0, mui = 3, murf = 0, muri = 0, # mup and mui non-default values
d_bvf = 0, d_bvi = 0, d_rf = 0, d_ri = 0) # all default values

grfx Simulated genetic random effects

Description

This function simulates effects for random terms in a linear mixed model based on relatedness
matrices. The intended purpose is for simulating genetic and environmental effects from a pedigree.

20 grfx

Usage

grfx(n, G, incidence = NULL, output = "matrix", stdnorms = NULL, warn = TRUE)

Arguments

n The number of individuals for which to simulate effects

G The variance-covariance matrix to model the effects after

incidence A matrix of the covariance structure of the ’n’ individuals or the Cholesky fac-
torization of class CHMfactor for this structure.

output Format for the output

stdnorms Standard normal deviates to use

warn Should a warning message be produced when the function interprets what to do
based on the object class supplied to incidence

Details

The total number of effects simulated will be n*d, where d is the number of columns in the ’G’
matrix. The standard normal deviates can be supplied instead of generated within the function
when stdnorms != NULL. The length of this vector must be n*nrow(G).

Supplied incidence matrices should be n-by-n symmetric matrices or cholesky factorizations that
resulted from a call to Matrix::Cholesky(). For simulated random effects using design matrices,
see drfx. If no incidence matrix is supplied, incidence = NULL, the Identity matrix is used, which
assumes that all ’n’ random effects are independently and identically distributed (default to Identity
matrix).

See examples for how to make and use a Cholesky factorized incidence matrix, for instance in a
Monte Carlo simulation. Whether such an approach results in performance of speed improvements
within the Monte Carlo simulation, by avoiding a Cholesky decomposition of a large matrix at each
iteration, has not been tested. Setting warn = FALSE will suppress the warnings that the function is
assuming a Cholesky factorization is contained in the object supplied to the incidence argument.
Currently, Cholesky factorizations must inherit from the class “CHMfactor”.

If G = x, where ’x’ is a single number, then ’x’ should still be specified as a 1-by-1 matrix (e.g.,
matrix(x)). Note, the G-matrix should never have a structure which produces a correlation exactly
equal to 1 or -1. Instead, covariances should be specified so as to create a correlation of slightly less
than (greater than) 1 (-1). For example: 0.9999 or -0.9999.

Value

The random effects coerced to be in the format specified by output. The default is a "matrix".

Author(s)

<matthewwolak@gmail.com>

See Also

MCMCglmm, drfx, makeA, makeAA, makeD, makeDomEpi, makeDsim, makeS

LRTest 21

Examples

Create additive genetic breeding values for 2 uncorrelated traits
with different additive genetic variances

A <- makeA(warcolak[1:200, 1:3])
Gmat <- matrix(c(20, 0, 0, 10), 2, 2)
breedingValues <- grfx(n = 200, G = Gmat, incidence = A)

Now with a user supplied set of standard normal deviates
snorms <- rnorm(nrow(warcolak[1:200,]) * ncol(Gmat))
breedingValues2a <- grfx(n = 200, G = Gmat, incidence = A, stdnorms = snorms)
breedingValues2b <- grfx(n = 200, G = Gmat, incidence = A, stdnorms = snorms)
identical(breedingValues2a, breedingValues2b) #<-- TRUE
var(breedingValues2a)
var(breedingValues2b)

User supplied Cholesky factorization of the incidence matrix from above
cA <- Cholesky(A, LDL = FALSE, super = FALSE)
inherits(cA, "CHMfactor") #<-- TRUE

breedingValues3 <- grfx(n = 200, G = Gmat, incidence = cA, stdnorms = snorms)
all.equal(breedingValues2a, breedingValues3) #<-- TRUE

LRTest log-Likelihood Ratio Test

Description

Test the null hypothesis that the two models fit the data equally well.

Usage

LRTest(full, reduced, df = 1, boundaryCorrection = FALSE)

Arguments

full A numeric variable indicating the log-likelihood of the full model

reduced A numeric variable indicating the log-likelihood of the reduced model

df The number of degrees of freedom to use, representing the difference between
the full and reduced model in the number of parameters estimated

boundaryCorrection

A logical argument indicating whether a boundary correction under one degree
of freedom should be included. If the parameter that is dropped from the reduced
model is estimated at the boundary of its parameter space in the full model, the
boundary correction is often required. See Details for more.

22 LRTest

Details

Boundary correction should be applied if the parameter that is dropped from the full model was on
the boundary of its parameter space. In this instance, the distribution of the log-likelihood ratio test
statistic is approximated by a mix of chi-square distributions (Self and Liang 1987). A TRUE value
will implement the boundary correction for a one degree of freedom test. This is equivalent to halv-
ing the p-value from a test using a chi-square distribution with one degree of freedom (Dominicus
et al. 2006).

Currently, the test assumes that both log-likelihoods are negative or both are positive and will stop if
they are of opposite sign. The interpretation is that the model with a greater negative log-likelihood
(closer to zero) or greater positive log-likelihood provides a better fit to the data.

Value

a list:

lambda a numeric log-likelihood ratio test statistic

Pval a numeric p-value given the lambda tested against a chi-squared distribution with the number
of degrees of freedom as specified. May have had a boundary correction applied.

corrected.Pval a logical indicating if the p-value was derived using a boundary correction. See
Details

Author(s)

<matthewwolak@gmail.com>

References

Self, S. G., and K. Y. Liang. 1987. Asymptotic properties of maximum likelihood estimators and
likelihood ratio tests under nonstandard conditions. Journal of the American Statistical Association
82:605-610.

Dominicus, A., A. Skrondal, H. K. Gjessing, N. L. Pedersen, and J. Palmgren. 2006. Likelihood
ratio tests in behavioral genetics: problems and solutions. Behavior Genetics 36:331-340.

See Also

constrainFun

Examples

No boundary correction
(noBC <- LRTest(full = -2254.148, reduced = -2258.210,
df = 1, boundaryCorrection = FALSE))
No boundary correction
(withBC <- LRTest(full = -2254.148, reduced = -2258.210,
df = 1, boundaryCorrection = TRUE))
stopifnot(noBC$Pval == 2*withBC$Pval)

makeA 23

makeA Creates the additive genetic relationship matrix

Description

This returns the additive relationship matrix in sparse matrix format.

Usage

makeA(pedigree)

Arguments

pedigree A pedigree where the columns are ordered ID, Dam, Sire

Details

Missing parents (e.g., base population) should be denoted by either ’NA’, ’0’, or ’*’.

Used as a support function to makeD.

See function makeAinv for directly obtaining the inverse of the additive genetic relationship matrix.

Value

Returns A, or the numerator relationship matrix, in sparse matrix form.

Author(s)

<matthewwolak@gmail.com>

See Also

makeD, makeS

Examples

makeA(Mrode2)

24 makeAA

makeAA Creates the additive by additive epistatic genetic relationship matrix

Description

Given a pedigree, the matrix of additive by additive genetic relatedness (AA) among all individuals
in the pedigree is returned.

Usage

makeAA(pedigree)

Arguments

pedigree A pedigree where the columns are ordered ID, Dam, Sire

Details

Missing parents (e.g., base population) should be denoted by either ’NA’, ’0’, or ’*’.

The function first estimates the A matrix using makeA, then it calculates the Hadamard (element-
wise) product of the A matrix with itself (A # A).

Value

a list:

AA the AA matrix in sparse matrix form

logDet the log determinant of the AA matrix

AAinv the inverse of the AA matrix in sparse matrix form

listAAinv the three column form of the non-zero elements for the inverse of the AA matrix

Author(s)

<matthewwolak@gmail.com>

See Also

makeA

Examples

makeAA(Mrode2)

makeAinv 25

makeAinv Creates the inverse additive genetic relationship matrix

Description

This returns the inverse of the numerator relationship matrix (inverse additive genetic relatedness
matrix). It can also be used to obtain coefficients of inbreeding for the pedigreed population.

Usage

makeAinv(
pedigree,
f = NULL,
ggroups = NULL,
fuzz = NULL,
gOnTop = FALSE,
det = TRUE,
...

)

Default S3 method:
makeAinv(
pedigree,
f = NULL,
ggroups = NULL,
fuzz = NULL,
gOnTop = FALSE,
det = TRUE,
...

)

S3 method for class 'fuzzy'
makeAinv(
pedigree,
f = NULL,
ggroups = NULL,
fuzz,
gOnTop = FALSE,
det = TRUE,
...

)

makeGGAinv(pedigree, f = NULL, ggroups = NULL, det = TRUE, ...)

Arguments

pedigree A pedigree where the columns are ordered ID, Dam, Sire

26 makeAinv

f A numeric indicating the level of inbreeding. See Details

ggroups Either a vector with the unique name of each genetic group, or a numeric indi-
cating the number of unique genetic groups. See Details for different ways to
specify. Note, if NULL then the regular A-inverse will be constructed. Also,
must be NULL if fuzz is non-NULL.

fuzz A matrix containing the fuzzy classification of phantom parents into genetic
groups. See Details.

gOnTop A logical indicating if (when including genetic groups) the A-inverse should be
constructed with the ‘g’ genetic groups located in the first ‘g’ rows and columns
if TRUE, else the ‘g’ genetic groups are located in the last ‘g’ rows and columns
of A-inverse

det Logical, indicating if the (log) determinant of the A matrix should be returned

... Arguments to be passed to methods

Details

Missing parents (e.g., base population) should be denoted by either ’NA’, ’0’, or ’*’.

The functions implement an adaptation of the Meuwissen and Luo (1992) algorithm (particularly,
following the description of the algorithm in Mrode 2005) with some code borrowed from the
inverseA function by Jarrod Hadfield in the MCMCglmm package. Further, providing a non-NULL
argument to ggroups incorporates the Quaas (1988) algorithm for directly obtaining the augmented
A-inverse matrix for genetic groups into Meuwissen and Luo’s (1992) algorithm, thereby, con-
sidering inbreeding during the construction of the A-inverse. Further calculations needed for the
algorithm to incorporate inbreeding and genetic groups follow the theory presented in VanRaden
(1992). Alternatively, group-specific inverse relatedness matrices can be formed with makeGGAinv,
see below.

At the moment, providing the inbreeding level of individuals or the base population has not been
implemented. However, this argument is a placeholder for now.

Genetic groups can be incorporated into a single A-inverse by providing a value to the ggroups
argument in makeAinv. The value supplied to ggroups can either be (1) a single integer indicating
the number of unique genetic groups or (2) a character vector containing the name for each genetic
group. These are referred to as pedigree types "A" and "D", respectively, and further details follow
below.

(Type="A") the pedigree contains unique IDs for the ’g’ genetic groups in the first ’g’ lines of the
pedigree. The dam and sire of the genetic group rows should contain missing values (e.g., NA, "0",
or "*"). All individuals in the pedigree should then have one of the ‘g’ genetic groups instead of an
unknown parent. (Type="D") the pedigree contains only individuals in the ID column (no genetic
groups have an ID) and there should be no missing values for any dams or sires. Instead, individuals
for whom the dam and/or sire is unknown should have one of the genetic groups identified in the
vector supplied to ggroups as the dam or sire.

‘Fuzzy classification’ of genetic groups (Fikse 2009) can be implemented if a ‘matrix’ (of class
matrix or Matrix) is supplied to the fuzzy argument. The fuzzy classification matrix must have
row names matching all of the phantom parents in the pedigree and the column names must be
present and specify the genetic groups. The fuzzy classification matrix essentially contains prob-
ability of group membership for each phantom parent. Therefore, each row should sum to 1. The
pedigree must have an identity in a unique row for every phantom parent and cannot have genetic

makeAinv 27

groups as either identities (in the first column) or as dam or sire (second and third columns). Further,
if fuzzy classification is desired, the function must specify ggroups = NULL.

When genetic groups (including the case of fuzzy classification of genetic groups) are included
in the A-inverse matrix, the argument to gOnTop specifies if the genetic group elements in the A-
inverse should occupy the top-left (gOnTop = TRUE) or bottom-right (gOnTop = FALSE) of the matrix.
Depending on how the software implementing an animal model solves the mixed model equations,
the equations for the genetic groups (and thus the elements in the augmented A-inverse) should be
the first or last set of equations.

Value

a list:

Ainv the inverse of the additive genetic relationship matrix in sparse matrix form
listAinv the three column list of the non-zero elements for the inverse of the additive genetic rela-

tionship matrix with attributes rowNames and geneticGroups. attr(*, "rowNames") links
the integer for rows/columns to the ID column from the pedigree. attr(*, "geneticGroups")
is a two element vector with the first integer indicating how many genetic groups are included
in the pedigree. This last attribute is necessary for some software programs to correctly specify
the residual degrees of freedom when calculating the log-likelihood in a model that implicitly
fits fixed genetic group effects.

f the individual coefficients of inbreeding for each individual in the pedigree (matches the order
of the first/ID column of the pedigree). If the pedigree contains ‘g’ genetic groups in the first
‘g’ rows, then the first ‘g’ elements of f are assigned 0. If the pedigree contains ‘p’ phantom
parents in the first ‘p’ rows, then the first ‘p’ elements of f are assigned 0.

logDet the log determinant of the A matrix
dii the (non-zero) elements of the diagonal D matrix of the A=TDT’ decomposition. Contains the

variance of Mendelian sampling. Matches the order of the first/ID column of the pedigree. If
the pedigree contains ‘g’ genetic groups in the first ‘g’ rows, then the first ‘g’ elements of f
are assigned 0. If the pedigree contains ‘p’ phantom parents in the first ‘p’ rows, then the first
‘p’ elements of f are assigned 0.

Author(s)

<matthewwolak@gmail.com>

References

Fikse, F. 2009. Fuzzy classification of phantom parent groups in an animal model. Genetics Selec-
tion Evolution 41:42.

Meuwissen, T.H.E & Luo, Z. 1992. Computing inbreeding coefficients in large populations. Ge-
netics, Selection, Evolution. 24:305-313.

Mrode, R.A. 2005. Linear Models for the Prediction of Animal Breeding Values, 2nd ed. Cam-
bridge, MA: CABI Publishing.

Quaas, R.L. 1988. Additive genetic model with groups and relationships. Journal of Dairy Science.
71:1338-1345.

VanRaden, P.M. 1992. Accounting for inbreeding and crossbreeding in genetic evaluation of large
populations. Journal of Dairy Science. 75:3136-3144.

28 makeAinv

See Also

makeAstarMult, makeA

Examples

Without genetic groups
makeAinv(Mrode2)

With genetic groups
Type A
typeAped <- Q1988[-c(3:7), c("id", "damGG", "sireGG")]
AstarA <- makeAinv(typeAped, ggroups = 2, gOnTop = FALSE)$Ainv
Type D
typeDped <- Q1988[-c(1:7), c("id", "damGG", "sireGG")]
AstarD <- makeAinv(typeDped, ggroups = c("g1", "g2"), gOnTop = FALSE)$Ainv
stopifnot(identical(AstarA, AstarD))

Show that the augmented A-inverse with genetic groups
contains the normal A-inverse (i.e., without genetic groups)
Augmented A-inverse with genetic groups
ggAinv <- makeAinv(Mrode3[-c(1,2), c("calf", "damGG", "sireGG")],

ggroups = c("g1", "g2"), gOnTop = FALSE)$Ainv
noggAinv <- makeAinv(Mrode3[-c(1,2), c("calf", "dam", "sire")],

ggroups = NULL)$Ainv
First 8 rows & columns of ggAinv are same as A-inverse without
genetic groups
ggAinv[1:8, 1:8]
noggAinv
stopifnot(all.equal(ggAinv[1:8, 1:8], structure(noggAinv, geneticGroups = NULL)))

With fuzzy classification of genetic groups
example in Fikse (2009)
Fped <- F2009[-c(1:3), c("id", "phantomDam", "phantomSire")]

Fped$id <- factor(Fped$id, levels = as.character(unique(Fped$id)))
Ffuzz <- as.matrix(F2009[4:10, c("g1", "g2", "g3")])

dimnames(Ffuzz)[[1]] <- as.character(F2009[4:10, 1])
AstarF <- makeAinv(Fped, fuzz = Ffuzz, gOnTop = FALSE)$Ainv

Show that A-inverse with fuzzy classification of genetic groups
can be the same as genetic group A-inverse without fuzzy classification
Create a 'null' fuzzy classification matrix for Q1988 pedigree
QfuzzNull <- matrix(c(1,0,0,1,0, 0,1,1,0,1), nrow = 5, ncol = 2,
dimnames = list(letters[1:5], c("g1", "g2")))
typeFped <- Q1988[-c(1:2), c("id", "phantomDam", "phantomSire")]
AstarNullFuzzy <- makeAinv(typeFped, fuzz = QfuzzNull, gOnTop = FALSE)$Ainv
Same as above using either pedigree type 'A' or 'D'
stopifnot(identical(AstarNullFuzzy, AstarA),
identical(AstarNullFuzzy, AstarD))

With genetic groups
Type A
typeAped <- Q1988[-c(3:7), c("id", "damGG", "sireGG")]

makeAstarMult 29

(AinvOutA <- makeGGAinv(typeAped, ggroups = 2)$Ainv)
Type D
typeDped <- Q1988[-c(1:7), c("id", "damGG", "sireGG")]
(AinvOutD <- makeGGAinv(typeDped, ggroups = c("g1", "g2"))$Ainv)
stopifnot(identical(AinvOutA, AinvOutD))

makeAstarMult Creates the inverse additive genetic relationship matrix with genetic
groups

Description

This returns the inverse of the additive genetic relationship matrix with genetic groups (A*). The
matrix is set up through matrix multiplication of two sub-matrices instead of directly (as makeAinv
does).

Usage

makeAstarMult(pedigree, ggroups, fuzz = NULL, gOnTop = FALSE)

Arguments

pedigree A pedigree where the columns are ordered ID, Dam, Sire

ggroups Either a vector with the unique name of each genetic group, or a numeric indi-
cating the number of unique genetic groups. See Details for different ways to
specify. Note, cannot be NULL.

fuzz A matrix containing the fuzzy classification of individuals into genetic groups.

gOnTop A logical indicating if the A-inverse should be constructed with the ‘g’ genetic
groups located in the first ‘g’ rows and columns if TRUE, else the ‘g’ genetic
groups are located in the last ‘g’ rows and columns of A-inverse.

Details

Missing parents (e.g., base population) should be denoted by either ’NA’, ’0’, or ’*’.

The function implements the matrix multiplication, using sub-matrices Q and A^-1, as detailed in
Quaas (1988, pp. 1342-1343).

Genetic groups can be incorporated into the A-inverse by providing a value to the ggroups ar-
gument. The value supplied to ggroups can either be (1) a single integer indicating the number
of unique genetic groups or (2) a character vector containing the name for each genetic group.
These are referred to as pedigree types "A" and "D", respectively, and further details follow below.
(Type="A") the pedigree contains unique IDs for the ’g’ genetic groups in the first ’g’ lines of the
pedigree. The dam and sire of the genetic group rows should contain missing values (e.g., NA, "0",
or "*"). All individuals in the pedigree should then have one of the ’g’ genetic groups instead of an
unknown parent. (Type="D") the pedigree contains only individuals in the ID column (no genetic
groups have an ID) and there should be no missing values for any dams or sires. Instead, individuals

30 makeAstarMult

for whom the dam and/or sire is unknown should have one of the genetic groups identified in the
vector supplied to ggroups as the dam or sire.

Fuzzy classification of genetic groups is implemented when fuzz is non-NULL.

The argument to gOnTop specifies if the elements in the A-inverse should come at the beginning
(gOnTop = TRUE) or end (gOnTop = FALSE) of the matrix. Depending on how the software imple-
menting an animal model solves the mixed model equations, the equations for the genetic groups
(and thus the elements in the augmented A-inverse) should be the first or last set of equations.

See function makeAinv for directly obtaining the inverse of the additive genetic relationship matrix
with genetic groups.

Value

Returns A*, or the inverse of the numerator relationship with groups, in sparse matrix form.

Author(s)

<matthewwolak@gmail.com>

References

Quaas, R.L. 1988. Additive genetic model with groups and relationships. Journal of Dairy Science.
71:1338-1345.

See Also

makeAinv, ggcontrib

Examples

Using the Q1988 dataset in nadiv
assign a null fuzzy classification matrix
QfuzzNull <- matrix(c(1,0,0,1,0, 0,1,1,0,1), nrow = 5, ncol = 2,
dimnames = list(letters[1:5], c("g1", "g2")))

Type A
no fuzzy classification
Astar_A <- makeAstarMult(Q1988[-c(3:7), c(1,4,5)], ggroups = 2)
with fuzzy classification
Astar_Afuzzy <- makeAstarMult(Q1988[, c(1, 6, 7)],
ggroups = 2, fuzz = QfuzzNull)

Type D
no fuzzy classification
Astar_D <- makeAstarMult(Q1988[-c(1:7), c(1, 4, 5)], ggroups = c("g1", "g2"))
with fuzzy classification
Astar_Dfuzzy <- makeAstarMult(Q1988[-c(1:2), c(1, 6, 7)],
ggroups = c("g1", "g2"), fuzz = QfuzzNull)

Obtain the matrix directly

makeD 31

no fuzzy classification
Astar_direct <- makeAinv(Q1988[-c(3:7), c(1,4,5)], ggroups = 2)$Ainv
stopifnot(length(drop0(round(Astar_direct
- (Astar_A - Astar_Afuzzy)
- (Astar_D - Astar_Dfuzzy)
- Astar_direct, 10))@x) == 0)

with fuzzy classification
Astar_directF <- makeAinv(Q1988[-c(1:2), c(1, 6, 7)], fuzz = QfuzzNull)$Ainv
stopifnot(length(drop0(round(Astar_directF
- (Astar_A - Astar_Afuzzy)
- (Astar_D - Astar_Dfuzzy)
- Astar_direct, 10))@x) == 0)

makeD Create the dominance genetic relationship matrix

Description

Given a pedigree, the matrix of coefficients of fraternity are returned - the D matrix for autosomes
and the Sd matrix for sex chromosomes. Note, inbreeding is not directly incorporated into the
calculation of the coefficients (see Details). Functions will return the inverses of the D and Sd
matrices by default, otherwise this operation can be skipped if desired.

Usage

makeD(
pedigree,
parallel = FALSE,
ncores = getOption("mc.cores", 2L),
invertD = TRUE,
returnA = FALSE,
det = TRUE,
verbose = TRUE

)

makeSd(
pedigree,
heterogametic,
DosageComp = c(NULL, "ngdc", "hori", "hedo", "hoha", "hopi"),
parallel = FALSE,
ncores = getOption("mc.cores", 2L),
invertSd = TRUE,
returnS = FALSE,
det = TRUE,
verbose = TRUE

)

32 makeD

Arguments

pedigree A pedigree with columns organized: ID, Dam, Sire. For use with makeSd, a
fourth column indicates the sex of each individual in the pedigree.

parallel Logical, indicating whether computation should be run on multiple processors
at once. See details for considerations.

ncores Number of cores to use when parallel = TRUE. Default is maximum available.
Otherwise, set with an integer. See details for considerations.

invertD, invertSd
A logical indicating whether or not to invert the D or S matrix

returnA, returnS
Logical, indicating if the numerator relationship matrix (A or S) should be stored
and returned.

det Logical, indicating if the determinant of the D or Sd matrix should be returned.

verbose Logical, indicating if progress messages should be displayed.

heterogametic Character indicating the label corresponding to the heterogametic sex used in
the "Sex" column of the pedigree

DosageComp A character indicating which model of dosage compensation. If NULL then the
“ngdc” model is assumed.

Details

Missing parents (e.g., base population) should be denoted by either ’NA’, ’0’, or ’*’.

There exists no convenient method of obtaining the inverse of the dominance genetic relatedness
matrix (or the D matrix itself) directly from a pedigree (such as for the inverse of A, i.e., Quaas
(1995)). Therefore, these functions computes the coefficient of fraternity (Lynch and Walsh, 1998)
for every individual in the pedigree with a non-zero additive genetic relatedness in the case of
autosomes (makeD) or for the homogametic sex only in the case of sex chromosomes (makeSd,
because the heterogametic sex has only one copy of the shared sex chromosome and therefore
cannot express dominance allelic interactions).

The coefficients of fraternity are only approximations that assume no inbreeding. The algorithm
used here, however, incorporates inbreeding into the calculation of coefficients of coancestry (using
‘makeA()‘) that are used to calculate coefficients of fraternity. Similarly, the diagonals of the D and
Sd matrices are corrected for inbreeding. Meaning, the diagonals of D and Sd are (1-f) so that the
overall dominance genetic variance is equal to (1-f)V_D, where f is the coefficient of inbreeding
and V_D is dominance genetic variance. This is interpreted as the amount of dominance genetic
variance that would be expected if the allele frequencies in the inbred population were representative
of a non-inbred, randomly mating population (Shaw et al. 1998; Wolak and Keller 2014). Note,
the construction of the D matrix is more computationally demanding (in computing time and space
requirements) than is the construction of A. This is possibly also the case for construction of Sd in
comparison to the S matrix.

To overcome the computational difficulties, this function can enable parallel processing (see pack-
age parallel included in the R distribution) to speed up the execution. Note this is not be possible
on Windows (See parallel documentation for further information), therefore parallel = TRUE
should only be used on Linux or Mac operating systems (i.e., not Windows). The default is to use
the maximum number of cpus available to the machine, but this can be restricted by indicating the

makeD 33

number desired in the argument ncores. Setting up the multi-processing takes some overhead, so
no real advantage is gained for small pedigrees. Also, since all processes are sharing a fixed amount
of RAM, very large pedigrees using many processes in parallel may not be feasible due to RAM
restrictions (i.e., if each process needs "n" amount of RAM to run, then ncores should be set to =
total RAM/n). Otherwise the machine can become overworked.

Note, for very large pedigrees returnA or returnS should be set to FALSE to avoid drastically
increasing the memory requirements while making D or Sd, respectively. When this occurs, ’NULL’
is returned for the element of ’A’ in the output of makeD or for the element of ’S’ in the output of
makeSd.

Value

a list:

A,S the A or S matrix in sparse matrix form

D,Sd the D or Sd matrix in sparse matrix form

logDet the log determinant of the D or Sd matrix

Dinv,Sdinv the inverse of the D or inverse of the Sd matrix in sparse matrix form

listDinv,listSdinv the three column form of the non-zero elements for the inverse of the D or the
inverse of the Sd matrix

Author(s)

<matthewwolak@gmail.com>

References

Quaas, R.L. 1995. Fx algorithms. An unpublished note.

Lynch M., & Walsh, B. 1998. Genetics and Analysis of Quantitative Traits. Sinauer, Sunderland,
Massachusetts.

Shaw, R.G., D.L. Byers, and F.H. Shaw. 1998. Genetic components of variation in Nemophila
menziesii undergoing inbreeding: Morphology and flowering time. Genetics. 150:1649-1661.

Wolak, M.E. and L.F. Keller. 2014. Dominance genetic variance and inbreeding in natural popu-
lations. In Quantitative Genetics in the Wild, A. Charmantier, L.E.B. Kruuk, and D. Garant eds.
Oxford University Press, pp. 104-127.

See Also

makeDsim, makeSdsim

Examples

DinvMat <- makeD(Mrode9, parallel = FALSE)$Dinv

SdinvMat <- makeSd(FG90, heterogametic = "0", parallel = FALSE)$Sdinv
Check to make sure getting correct elements
`simPedDFC()` for pedigree with 4 unique sex-linked dominance relatedness values
uSdx <- unique(makeSd(simPedDFC(3), heterogametic = "M", returnS = FALSE)$Sd@x)

34 makeDomEpi

stopifnot(all(uSdx %in% c(1, 0.5, 3/16, 1/16))) #<-- must match one of these 4

makeDomEpi Creates the additive by dominance and dominance by dominance
epistatic genetic relationship matrices

Description

Given a pedigree, the matrix of additive by dominance (AD) genetic relatedness, dominance by
dominance (DD) genetic relatedness, or both are returned.

Usage

makeDomEpi(
pedigree,
output = c("AD", "DD", "both"),
parallel = FALSE,
invertD = FALSE,
det = TRUE

)

Arguments

pedigree A pedigree where the columns are ordered ID, Dam, Sire

output Character(s) denoting which matrix and its inverse is to be constructed.

parallel A logical indicating whether or not to use parallel processing. Note, this may
only be available on Mac and Linux operating systems.

invertD A logical indicating whether or not to invert the D matrix

det A logical indicating whether or not to return the determinants for the epistatic
relationship matrices

Details

Missing parents (e.g., base population) should be denoted by either ’NA’, ’0’, or ’*’.

Because of the computational demands of constructing the D matrix (see makeD), this function
allows for the inverses that are derived from the D matrix (i.e., D-inverse, AD-inverse, and DD-
inverse)to be constructed at the same time. This way, the D matrix will only have to be constructed
once for use in the three separate genetic relatedness inverse matrices that depend upon it. However,
using the output and invertD options in different combinations will ensure that only the desired
matrix inverses are constructed.

parallel = TRUE should only be used on Linux or Mac OSes (i.e., not Windows).

Both the AD and DD matrix are computed from the Hadamard product of the respective matrices
(see also, makeAA).

makeDsim 35

Value

All of the following will be returned. However, the values of the output and invertD options
passed to the function will determine which of the following are not NULL objects within the list:

D the D matrix in sparse matrix form
logDetD the log determinant of the D matrix
AD the AD matrix in sparse matrix form
logDetAD the log determinant of the AD matrix
DD the DD matrix in sparse matrix form
logDetDD the log determinant of the DD matrix
Dinv the inverse of the D matrix in sparse matrix form
ADinv the inverse of the AD matrix in sparse matrix form
DDinv the inverse of the DD matrix in sparse matrix form
listDinv the three column form of the non-zero elements for the inverse of the D matrix
listADinv the three column form of the non-zero elements for the inverse of the AD matrix
listDDinv the three column form of the non-zero elements for the inverse of the DD matrix

Author(s)

<matthewwolak@gmail.com>

See Also

makeA, makeD, makeAA

Examples

Boutput <- makeDomEpi(Mrode9, output = "b", parallel = FALSE, invertD = FALSE)
str(Boutput)

DADoutput <- makeDomEpi(Mrode9, output = "AD", parallel = FALSE, invertD = TRUE)
str(DADoutput)

makeDsim Create the dominance genetic relationship matrix through an iterative
(simulation) process

Description

Alleles are explicitly traced through a pedigree to obtain coefficients of fraternity between pairs of
individuals (the probability of sharing both alleles identical by descent) - for either autosomes or
sex chromosomes. This is accomplished in an iterative process to account for the various routes
by which an allele will progress through a pedigree due to Mendelian sampling at either autosomes
or sex chromosomes. The autosomal case is an implementation of the simulation approach of
Ovaskainen et al. (2008).

36 makeDsim

Usage

makeDsim(
pedigree,
N,
parallel = FALSE,
ncores = getOption("mc.cores", 2L),
invertD = TRUE,
calcSE = FALSE,
returnA = FALSE,
verbose = TRUE

)

makeSdsim(
pedigree,
heterogametic,
N,
DosageComp = c(NULL, "ngdc", "hori", "hedo", "hoha", "hopi"),
parallel = FALSE,
ncores = getOption("mc.cores", 2L),
invertSd = TRUE,
calcSE = FALSE,
returnS = FALSE,
verbose = TRUE

)

Arguments

pedigree A pedigree with columns organized: ID, Dam, Sire. For use with makeSdsim, a
fourth column indicates the sex of each individual in the pedigree.

N The number of times to iteratively trace alleles through the pedigree

parallel A logical indicating whether or not to use parallel processing. Note, this may
only be available for Mac and Linux operating systems.

ncores The number of cpus to use when constructing the dominance relatedness matrix.
Default is all available.

invertD, invertSd
A logical indicating whether or not to invert the D or Sd matrix

calcSE A logical indicating whether or not the standard errors for each coefficient of
fraternity should be calculated

returnA, returnS
Logical, indicating if the numerator relationship matrix (A or S) should be stored
and returned.

verbose Logical, indicating if progress messages should be displayed.

heterogametic Character indicating the label corresponding to the heterogametic sex used in
the "Sex" column of the pedigree

DosageComp A character indicating which model of dosage compensation. If NULL then the
“ngdc” model is assumed.

makeDsim 37

Details

Missing parents (e.g., base population) should be denoted by either ’NA’, ’0’, or ’*’.

parallel = TRUE should only be used on Linux or Mac operating systems (i.e., not Windows).

Ovaskainen et al. (2008) indicated that the method of calculating the D matrix (see makeD) is only
an approximation. They proposed a simulation method that is implemented here. This should be
more appropriate, especially when inbreeding occurs in the pedigree.

The objects listDsim and listSdsim will list both the approximate values (returned from makeD or
makeSd) as well as the simulated values. If calcSE is TRUE, these values will be listed in listDsim
or listSdsim.

Value

a list:

A,S the A or S matrix in sparse matrix form

D,Sd the approximate D or Sd matrix in sparse matrix form

logDetD,logDetSd the log determinant of the D or Sd matrix

Dinv,Sdinv the inverse of the approximate D or approximate Sd matrix in sparse matrix form

listDinv,listSdinv the three column form of the non-zero elements for the inverse of the approxi-
mate D matrix or the inverse of the approximate Sd matrix

Dsim,Sdsim the simulated D or Sd matrix in sparse matrix form

logDetDsim,logDetSdsim the log determinant of the simulated D or simulated Sd matrix

Dsiminv,Sdsiminv the inverse of the simulated D or simulated Sd matrix in sparse matrix form

listDsim,listSdsim the three column form of the non-zero and non-self elements for the simulated
D or simulated Sd matrix

listDsiminv,listSdsiminv the three column form of the non-zero elements for the inverse of the
simulated D or the inverse of the simulated Sd matrix

Note

This simulation can take a long time for large pedigrees (a few thousand and higher) and large
values of N (one thousand and higher). If unsure, it is advisable to start with a lower N and gradually
increase to obtain a sense of the time required to execute a desired N.

Author(s)

<matthewwolak@gmail.com>

References

Ovaskainen, O., Cano, J.M., & Merila, J. 2008. A Bayesian framework for comparative quantitative
genetics. Proceedings of the Royal Society B 275, 669-678.

See Also

makeD, makeSd

38 makeM

Examples

simD <- makeDsim(Mrode9, N = 1000, parallel = FALSE,
invertD = TRUE, calcSE = TRUE)$listDsim

simSd <- makeSdsim(FG90, heterogametic = "0", N = 1000, parallel = FALSE,
invertSd = TRUE, calcSE = TRUE)$listSdsim

makeM Creates the (additive) mutational effects relationship matrix

Description

This returns the (additive) mutational effects relationship matrix in sparse matrix format.

Usage

makeM(pedigree)

Arguments

pedigree A pedigree where the columns are ordered ID, Dam, Sire

Details

Missing parents (e.g., base population) should be denoted by either ’NA’, ’0’, or ’*’.

See function makeMinv for directly obtaining the inverse of the (additive) mutational effects genetic
relationship matrix.

Value

Returns M, or the mutational effects relationship matrix, in sparse matrix form.

Author(s)

<matthewwolak@gmail.com>

See Also

makeA, makeS

Examples

makeM(Mrode2)

makeMinv 39

makeMinv Create the inverse (additive) mutational effects relationship matrix

Description

Returns the inverse of the (additive) mutational effects relationship matrix. It can also be used to
obtain components needed for the calculations in the underlying algorithm.

Usage

makeMinv(pedigree, ...)

makeMinvML(pedigree, ...)

Arguments

pedigree A pedigree where the columns are ordered ID, Dam, Sire

... Arguments to be passed to methods

Details

Missing parents (e.g., base population) should be denoted by either ’NA’, ’0’, or ’*’.

Note the assumption under the infinitesimal model, that mutation has essentially zero probability
of affecting an inbred locus (hence removing inbred identity-by-descent), however, mutations may
themselves be subject to inbreeding (Wray 1990).

By default, the algorithm described in Casellas and Medrano (2008) is implemented here, in which
the inverse-M is separate from the typical inverse relatedness matrix (inverse-A). Casellas and
Medrano’s algorithm allows separate partitioning of additive genetic variance attributed to inher-
itance of allelic variation present in the base population (inverse-A) from additive genetic variance
arising from mutation and subsequent sharing of mutant alleles identical-by-descent. Alternatively,
Wray (1990) formulates an algorithm which combines both of these processes (i.e., the A-inverse
with the M-inverse matrices). If the Wray algorithm is desired, this can be implemented by specify-
ing a numeric value to an argument named theta. The value used for theta should be as described
in Wray (1990). See examples below for use of this argument.

Value

a list:

Minv the inverse of the (additive) mutational effects relationship matrix in sparse matrix form

listMinv the three column list of the non-zero elements for the inverse of the (additive) mutational
effects relationship matrix. attr(*, "rowNames") links the integer for rows/columns to the
ID column from the pedigree.

h the amount by which segregation variance is reduced by inbreeding. Similar to the individual
coefficients of inbreeding (f) derived during the construction of the inverse numerator related-
ness matrix. in the pedigree (matches the order of the first/ID column of the pedigree).

40 makeS

logDet the log determinant of the M matrix

dii the (non-zero) elements of the diagonal D matrix of the M=TDT’ decomposition. Contains the
variance of Mendelian sampling. Matches the order of the first/ID column of the pedigree.
Note Wray (1990) and Casellas and Medrano (2008) algorithms use v=sqrt(dii).

Author(s)

<matthewwolak@gmail.com>

References

Casellas, J. and J.F. Medrano. 2008. Within-generation mutation variance for litter size in inbred
mice. Genetics. 179:2147-2155.

Meuwissen, T.H.E & Luo, Z. 1992. Computing inbreeding coefficients in large populations. Ge-
netics, Selection, Evolution. 24:305-313.

Mrode, R.A. 2005. Linear Models for the Prediction of Animal Breeding Values, 2nd ed. Cam-
bridge, MA: CABI Publishing.

Wray, N.A. 1990. Accounting for mutation effects in the additive genetic variance-covariance ma-
trix and its inverse. Biometrics. 46:177-186.

Examples

Example pedigree from Wray 1990
Implement Casellas & Medrano (2008) algorithm
Mout <- makeMinv(Wray90[, 1:3])

Wray (1990) algorithm with extra argument `theta`
Mwray <- makeMinv(Wray90[, 1:3], theta = 10.0)$Minv # compare to Wray p.184

makeS Creates the additive genetic relationship matrix for the shared sex
chromosomes

Description

The function returns the inverse of the additive relationship matrix in sparse matrix format for the
sex chromosomes (e.g., either X or Z).

Usage

makeS(
pedigree,
heterogametic,
DosageComp = c(NULL, "ngdc", "hori", "hedo", "hoha", "hopi"),
returnS = FALSE

)

makeS 41

Arguments

pedigree A pedigree where the columns are ordered ID, Dam, Sire, Sex

heterogametic Character indicating the label corresponding to the heterogametic sex used in
the “Sex” column of the pedigree

DosageComp A character indicating which model of dosage compensation. If NULL then the
“ngdc” model is assumed.

returnS Logical statement, indicating if the relationship matrix should be constructed in
addition to the inverse

Details

Missing parents (e.g., base population) should be denoted by either ’NA’, ’0’, or ’*’.

The inverse of the sex-chromosome additive genetic relationship matrix (S-matrix) is constructed
implementing the Meuwissen and Luo (1992) algorithm to directly construct inverse additive rela-
tionship matrices (borrowing code from Jarrod Hadfield’s MCMCglmm function, inverseA) and
using equations presented in Fernando & Grossman (1990; see Wolak et al. 2013). Additionally,
the S-matrix itself can be constructed (although this takes much longer than computing S-inverse
directly).

The choices of dosage compensation models are: no global dosage compensation ("ngdc"), random
inactivation in the homogametic sex ("hori"), doubling of the single shared sex chromosome in the
heterogametic sex ("hedo"), halving expression of both sex chromosomes in the homogametic sex
("hoha"), or inactivation of the paternal sex chromosome in the homogametic sex ("hopi").

Value

a list:

model the model of sex-chromosome dosage compensation assumed.

S the sex-chromosome relationship matrix in sparse matrix form or NULL if returnS = FALSE

logDet the log determinant of the S matrix

Sinv the inverse of the S matrix in sparse matrix form

listSinv the three column form of the non-zero elements for the inverse of the S matrix

inbreeding the sex-linked inbreeding coefficients for all individuals in the pedigree

vii a vector of the (non-zero) elements of the diagonal V matrix of the S=TVT’ decomposition.
Contains the variance of Mendelian sampling for a sex-linked locus

Author(s)

<matthewwolak@gmail.com>

References

Wolak, M.E., D.A. Roff, and D.J. Fairbairn. in prep. The contribution of sex chromosomal additive
genetic (co)variation to the phenotypic resemblance between relatives under alternative models of
dosage compensation.

42 makeTinv

Fernando, R.L. & Grossman, M. 1990. Genetic evaluation with autosomal and X-chromosomal
inheritance. Theoretical and Applied Genetics, 80:75-80.

Meuwissen, T.H.E. and Z. Luo. 1992. Computing inbreeding coefficients in large populations.
Genetics, Selection, Evolution, 24:305-313.

Examples

makeS(FG90, heterogametic = "0", returnS = TRUE)

makeTinv Creates components of the additive genetic relationship matrix and its
inverse

Description

This returns the Cholesky decomposition of the numerator relationship matrix and its inverse. It
can also be used to obtain coefficients of inbreeding for the pedigreed population.

Usage

makeTinv(pedigree, ...)

Default S3 method:
makeTinv(pedigree, ...)

S3 method for class 'numPed'
makeTinv(pedigree, ...)

Default S3 method:
makeT(pedigree, genCol = NULL, ...)

Default S3 method:
makeDiiF(pedigree, f = NULL, ...)

S3 method for class 'numPed'
makeDiiF(pedigree, f = NULL, ...)

Arguments

pedigree A pedigree where the columns are ordered ID, Dam, Sire

... Arguments to be passed to methods

genCol An integer value indicating the generation up to which the T matrix is to be
created (corresponding to columns of the lower triangle T matrix). The first
generation is numbered 0, default is all generations.

f A numeric vector indicating the level of inbreeding. See Details

makeTinv 43

Details

Missing parents (e.g., base population) should be denoted by either ’NA’, ’0’, or ’*’.

The function implements an adaptation of the Meuwissen and Luo (1992) algorithm (particularly,
following the description of the algorithm in Mrode 2005) with some code borrowed from the
inverseA function by Jarrod Hadfield in the MCMCglmm package.

The inbreeding level of individuals can be provided instead of calculated. f must be a vector that
is the same length as individuals in the pedigree. Supplied coefficients of inbreeding are used
instead of being calculated until a NA is encountered in the vector. From this position on, then
coefficients of inbreeding are calculated and replace entries in f. This can be used, for example,
to calculate coefficients of inbreeding for later generations when coefficients of inbreeding in the
previous generations have already been calculated. To specify an average coefficient of inbreeding
for the base population, modify the pedigree to include a single phantom parent and specify this
individual’s non-zero coefficient of inbreeding in f with the rest of the terms as NA.

Value

a list:

Tinv the inverse of the Cholesky decomposition of the additive genetic relationship matrix (Ainv=Tinv’
Dinv Tinv) in sparse matrix form

D the diagonal D matrix of the A=TDT’ Cholesky decomposition. Contains the variance of
Mendelian sampling. Matches the order of the first/ID column of the pedigree.

f the individual coefficients of inbreeding for each individual in the pedigree (matches the order of
the first/ID column of the pedigree).

Author(s)

<matthewwolak@gmail.com>

References

Meuwissen, T.H.E & Luo, Z. 1992. Computing inbreeding coefficients in large populations. Ge-
netics, Selection, Evolution. 24:305-313.

Mrode, R.A. 2005. Linear Models for the Prediction of Animal Breeding Values, 2nd ed. Cam-
bridge, MA: CABI Publishing.

See Also

makeAinv, makeA

Examples

Tinv <- makeTinv(Mrode2)
Method for a numeric pedigree (of `nadiv` class "numPed")
nPed <- numPed(Mrode2)
Tinv2 <- makeTinv(nPed)

########

44 Mrode2

DF <- makeDiiF(Mrode2)
manually construct the inverse of the relatedness matrix `Ainv`
Dinv <- DF$D #<-- not the inverse yet, just copying the object
Dinv@x <- 1 / DF$D@x #<-- inverse of a diagonal matrix
handAinv <- crossprod(Tinv, Dinv) %*% Tinv

make the A-inverse directly
Ainv <- makeAinv(Mrode2)$Ainv
Compare
handAinv
Ainv
stopifnot(all(abs((Ainv - handAinv)@x) < 1e-6))

supply previous generation coefficients of inbreeding (f)
to keep from re-calculating their f when analyzing subsequent generations
DF <- makeDiiF(Mrode2[, 1:3])
Mrode2$gen <- genAssign(Mrode2)
Mrode2$f_full <- DF$f
Mrode2$f_in <- with(Mrode2, c(f_full[gen <= 1], rep(NA, sum(gen > 1))))
DF2 <- makeDiiF(Mrode2[, 1:3], f = Mrode2$f_in)
stopifnot(identical(DF, DF2))

Mrode2 Pedigree from Table 2.1 of Mrode (2005)

Description

Pedigree from Table 2.1 of Mrode (2005)

Usage

Mrode2

Format

A data.frame with 6 observations on the following 3 variables:

id a numeric vector

dam a numeric vector

sire a numeric vector

Source

Mrode, R.A. 2005. Linear Models for the Prediction of Animal Breeding Values, 2nd ed. Cam-
bridge, MA: CABI Publishing.

Examples

str(Mrode2)

Mrode3 45

Mrode3 Pedigree, from chapter 3 of Mrode (2005) with genetic groups and a
trait column

Description

Pedigree, from chapter 3 of Mrode (2005) with genetic groups and a trait column

Usage

Mrode3

Format

A data.frame with 10 observations on the following 8 variables:

calf a factor with levels indicating the unique genetic groups and individuals

dam a numeric vector of maternal identities

sire a numeric vector of paternal identities

damGG a factor of maternal identities with genetic groups inserted instead of NA

sireGG a factor of paternal identities with genetic groups inserted instead of NA

sex a factor with levels female male

WWG a numeric vector of pre-weaning weight gain (kg) for five beef calves

Source

Mrode, R.A. 2005. Linear Models for the Prediction of Animal Breeding Values, 2nd ed. Cam-
bridge, MA: CABI Publishing.

Examples

data(Mrode3)
str(Mrode3)

Mrode9 Pedigree, adapted from example 9.1 of Mrode (2005)

Description

Pedigree, adapted from example 9.1 of Mrode (2005)

Usage

Mrode9

46 numPed

Format

A data.frame with 12 observations on the following 3 variables:

pig a numeric vector
dam a numeric vector
sire a numeric vector

Source

Mrode, R.A. 2005. Linear Models for the Prediction of Animal Breeding Values, 2nd ed. Cam-
bridge, MA: CABI Publishing.

Examples

data(Mrode9)
str(Mrode9)

numPed Integer Format Pedigree

Description

Conversion, checking, and row re-ordering of a pedigree in integer form of class ‘numPed’.

Usage

numPed(pedigree, check = TRUE)

ronPed(x, i, ...)

Arguments

pedigree A three column pedigree object, where the columns correspond to: ID, Dam, &
Sire

check A logical argument indicating if checks on the validity of the pedigree structure
should be made, but see Details

x A pedigree of class ‘numPed’
i, ... Index specifying elements to extract or replace: see [

Details

Missing parents (e.g., base population) should be denoted by either ’NA’, ’0’, ’-998’, or ’*’.

Individuals must appear in the ID column in rows preceding where they appear in either the Dam
or Sire column. See the prepPed function if this is not the case.

If pedigree inherits the class "numPed" (from a previous call to numPed()) and check = TRUE, the
checks are skipped. If check = FALSE any pedigree will be transformed into a pedigree consisting
of integers and missing values denoted by ’-998’.

Based on code from the MCMCglmm package

pcc 47

Value

An S3 object of class “numPed” representing the pedigree, where individuals are now numbered
from 1 to n and unknown parents are assigned a value of ‘-998’.

Author(s)

<matthewwolak@gmail.com>

See Also

prepPed, MCMCglmm, [

Examples

(nPed <- numPed(Mrode2))
class(nPed)

re-order and retain class 'numPed'
ronPed(nPed, order(nPed[, 2], nPed[, 3]))
class(nPed)

pcc REML convergence checks

Description

Mainly checks to ensure the variance components in a REML mixed model do not change between
the last two iterations more than what is allowed by the tolerance value. See details for extra check
on asreml-R models.

Usage

pcc(object, traces = NULL, tol = 0.01, silent = FALSE)

Arguments

object A list with at least one element named: monitor (see Details)

traces Optionally, a matrix to substitute instead of the monitor element to object.
Each row corresponds to a different variance component in the model and each
column is a different iteration of the likelihood calculation (column 1 is the first
iterate).

tol The tolerance level for which to check against all of the changes in variance
component parameter estimates

silent Optional argument to silence the output of helpful (indicating default underlying
behavior) messages

48 prepPed

Details

Object is intended to be an asreml-R model output. NOTE, The first 3 rows are ignored and thus
should not be variance components from the model (e.g., they should be the loglikelihood or degrees
of freedom, etc.). Also, the last column is ignored and should not be an iteration of the model (e.g.,
it indicates the constraint).

The function also checks object to ensure that the output from the asreml-R model does not contain
a log-likelihood value of exactly 0.00. An ASReml model can sometimes fail while still returning
a monitor object and TRUE value in the converge element of the output. This function will return
FALSE if this is the case.

Value

Returns TRUE if all variance parameters change less than the value specified by tol, otherwise
returns FALSE. Also see the details section for other circumstances when FALSE might be returned.

Author(s)

<matthewwolak@gmail.com>

Examples

Below is the last 3 iterations from the trace from an animal model of
tait1 of the warcolak dataset.
Re-create the output from a basic, univariate animal model in asreml-R

tracein <- matrix(c(0.6387006, 1, 0.6383099, 1, 0.6383294, 1, 0.6383285, 1),
nrow = 2, ncol = 4, byrow = FALSE)

dimnames(tracein) <- list(c("ped(ID)!ped", "R!variance"), c(6, 7, 8, 9))

pcc(object = NULL, trace = tracein)

prepPed Prepares a pedigree by sorting and adding ’founders’

Description

This function takes a pedigree, adds missing founders, and then sorts the pedigree.

Usage

prepPed(pedigree, gender = NULL, check = TRUE)

prepPed 49

Arguments

pedigree An object, where the first 3 columns correspond to: ID, Dam, & Sire. See
details.

gender An optional character for the name of the column in pedigree that corresponds
to the gender/sex of individuals. If specified, prepPed will assign a gender to
any founders it adds to the pedigree.

check A logical argument indicating if checks on the validity of the pedigree structure
should be made

Details

Many functions (both in nadiv and from other programs) dealing with pedigrees must first sort a
pedigree such that individuals appear in the ID column in rows preceding where they appear in
either the Dam or Sire column. Further, these functions and programs require that all individuals
in the dam and sire columns of a pedigree also have an entry in the ID column. This function
easily prepares data sets to accommodate these requirements using a very fast topological sorting
algorithm.

NOTE: more columns than just a pedigree can be passed in the pedigree argument. In the case of
missing founders, these columns are given NA values for all rows where founders have been added
to the pedigree. The entire object supplied to pedigree is ordered, ensuring that all information
remains connected to the individual

Missing parents (e.g., base population) should be denoted by either ’NA’, ’0’, or ’*’.

When a non-null argument is given to gender, dams without an entry in the ID column (that are
subsequently added to the pedigree) are given the gender designated for other dams (and similarly
for sires).

The check argument performs checks on the format of the pedigree supplied to try and identify
any issues regarding the notation of missing values and validity of the basic pedigree for further
processing.

Value

The pedigree object (can have more columns than just ID, Dam, and Sire), where: (1) the ID column
contains an ID for all individuals from the original pedigree object’s ID, Dam, and Sire columns
(i.e., founders are added) and (2) the pedigree is now sorted so that individuals are not in rows
preceding either their Dam or Sire.

See Also

genAssign, prunePed

Examples

First create an unordered pedigree with (4) missing founders
warcolak_unsuitable <- warcolak[sample(seq(5, nrow(warcolak), 1),

size = (nrow(warcolak) - 4), replace = FALSE),]
nrow(warcolak)
nrow(warcolak_unsuitable)

50 prunePed

Fix and sort the pedigree
Automatically assign the correct gender to the added founders
Also sort the data accompanying each individual

warcolak_fixed_ordered <- prepPed(warcolak_unsuitable, gender = "sex")
head(warcolak_fixed_ordered)

prunePed Prunes a pedigree based on individuals with phenotypes

Description

This function removes individuals who are either not themselves or not ancestors to phenotyped
individuals

Usage

prunePed(pedigree, phenotyped, ...)

Default S3 method:
prunePed(pedigree, phenotyped, ...)

S3 method for class 'numPed'
prunePed(pedigree, phenotyped, ...)

Arguments

pedigree An object, where the first 3 columns correspond to: ID, Dam, & Sire. See
details.

phenotyped A vector indicating which individuals in the pedigree have phenotypic informa-
tion available.

... Arguments to be passed to methods

Details

Often mixed effect models run much faster when extraneous information is removed before running
the model. This is particularly so when reducing the number of random effects associated with a
relationship matrix constructed from a pedigree.

NOTE: more columns than just a pedigree can be passed in the pedigree argument.

Missing parents (e.g., base population) should be denoted by either ’NA’, ’0’, or ’*’.

This function is very similar to (and the code is heavily borrowed from) a function of the same name
in the MCMCglmm package by Jarrod Hadfield.

Value

The pedigree object (can have more columns than just ID, Dam, and Sire), where the ID column
contains an ID for all individuals who are actually phenotyped or are an ancestor to an individual
with a phenotype (and are thus informative for estimating parameters in the base population).

Q1988 51

See Also

prepPed

Examples

Make a pedigree (with sex) from the warcolak dataset
warcolak_ped <- warcolak[, 1:4]

Reduce the number of individuals that have a phenotype for "trait1" in
#the warcolak dataset
t1phenotyped <- warcolak
t1phenotyped[sample(seq.int(nrow(warcolak)), 1500, replace = FALSE), "trait1"] <- NA
t1phenotyped <- t1phenotyped[which(!is.na(t1phenotyped$trait1)),]

The following will give a pedigree with only individuals that have a
phenotype for "trait1" OR are an ancestor to a phenotyped individual.

pruned_warcolak_ped <- prunePed(warcolak_ped, phenotyped = t1phenotyped$ID)

Now compare the sizes (note, pruned_warcolak_ped retained its column indicating sex.
dim(warcolak_ped)
dim(pruned_warcolak_ped)

We could have kept all of the data associated with individuals who had phenotypic
information on "trait1" by instead specifying

pruned_fullt1_warcolak_ped <- prunePed(warcolak, phenotyped = t1phenotyped$ID)
dim(pruned_fullt1_warcolak_ped) #<-- compare number of columns with above

Q1988 Pedigree with genetic groups adapted from Quaas (1988) equation [5]

Description

Pedigree with genetic groups adapted from Quaas (1988) equation [5]

Usage

Q1988

Format

A data.frame with 11 observations on the following 8 variables:

id a factor with levels indicating the unique individuals (including phantom parents) and genetic
groups

dam a factor of observed maternal identities

sire a factor vector of observed paternal identities

damGG a factor of maternal identities with genetic groups inserted instead of NA

52 simGG

sireGG a factor of paternal identities with genetic groups inserted instead of NA

phantomDam a factor of maternal identities with phantom parents inserted instead of NA

phantomSire a factor of paternal identities with phantom parents inserted instead of NA

group a factor of genetic groups to which each phantom parent belongs

Source

Quaas, R.L. 1988. Additive genetic model with groups and relationships. Journal of Dairy Science
71:1338-1345.

Examples

data(Q1988)
str(Q1988)

simGG Genetic group pedigree and data simulation

Description

Simulates a pedigree and phenotype for a focal population receiving immigrants. Genetic and
environmental differences can be specified between the focal and immigrant populations. Further,
these differences can have temporal trends.

Usage

simGG(
K,
pairs,
noff,
g,
nimm = 2,
nimmG = seq(2, g - 1, 1),
VAf = 1,
VAi = 1,
VRf = 1,
VRi = 1,
mup = 20,
muf = 0,
mui = 0,
murf = 0,
muri = 0,
d_bvf = 0,
d_bvi = 0,
d_rf = 0,
d_ri = 0

)

simGG 53

Arguments

K Integer number of individuals per generation, or the focal population carrying
capacity

pairs Integer number of mating pairs created by sampling with replacement from
adults of a given generation

noff Integer number of offspring each pair contributes to the next generation

g Integer number of (non-overlapping) generations to simulate

nimm Integer number of immigrants added to the population each generation of mi-
gration

nimmG Sequence of integers for the generations in which immigrants arrive in the focal
population

VAf Numeric value for the expected additive genetic variance in the first generation
of the focal population - the founders

VAi Numeric value for the expected additive genetic variance in each generation of
immigrants

VRf Numeric value for the expected residual variance in the focal population

VRi Numeric value for the expected residual variance in each generation of the im-
migrants

mup Numeric value for the expected mean phenotypic value in the first generation of
the focal population - the founders

muf Numeric value for the expected mean breeding value in the first generation of
the focal population - the founders

mui Numeric value for the expected mean breeding value for the immigrants

murf Numeric value for the expected mean residual (environmental) deviation in the
first generation of the focal population - the founders

muri Numeric value for the expected mean residual (environmental) deviation for the
immigrants

d_bvf Numeric value for the expected change between generations in the mean breed-
ing value of the focal population. Sets the rate of genetic selection occurring
across generations

d_bvi Numeric value for the expected change between generations in the mean breed-
ing value of the immigrant population each generation

d_rf Numeric value for the expected change between generations in the mean residual
(environmental) deviation of the focal population each generation

d_ri Numeric value for the expected change between generations in the mean residual
(environmental) deviation of the immigrant population each generation

Details

Offspring total additive genetic values u are the average of their parents u plus a Mendelian sampling
deviation drawn from a normal distribution with mean of 0 and variance equal to 0.5VA(1 − fsd)
where VA is VAf and fsd is the average of the parents’ coefficient of inbreeding f (p. 447 Verrier
et al. 1993). Each ‘immigrant’ (individual with unknown parents in generations >1) is given a

54 simGG

total additive genetic effect that is drawn from a normal distribution with mean of mui and variance
equal to VAi. Residual deviations are sampled for ‘focal’ and ‘immigrant’ populations separately,
using normal distributions with means of murf and muri, respectively, and variances of VRf and
VRi, respectively. Phenotypes are the sum of total additive genetic effects and residual deviations
plus an overall mean mup.

Trends in total additive genetic effects and/or residual deviations can be specified for both the focal
and immigrant populations. Trends in total additive genetic effects occurring in the immigrants, in
the residual deviations occurring in the focal population, and in the residual deviations occurring in
the immigrants are produced by altering the mean each generation for the separate distribution from
which these effects are each drawn. The change in mean over a generation is specified in units of
standard deviations of the respective distributions (e.g., square roots of VAi, VRf, and VRi) and is
set with d_bvi, d_rf, or d_ri, respectively.

Trends in total additive genetic effects for the focal population are produced by selecting individ-
uals to be parents of the next generation according to their predicted total additive genetic effects.
Individuals are assigned probabilities of being selected as a parent of the next generation depending
on how closely their predicted total additive genetic effect matches an optimum value. Probabilities
are assigned:

exp((
−1

2σx
)(x− θ)2)

where x is the vector of predicted total additive genetic effects (u), σx is the standard deviation of x,
and θ is the optimum value. Sampling is conducted with replacement based on these probabilities.

The parameter d_bvf specifies how much the optimal total additive genetic effect changes per gen-
eration. The optimal total additive genetic effect in a given generation is calculated as: muf + d_bvf
*sqrt(VAf) * (i-2). Individuals with predicted total additive genetic effects closest to this opti-
mum have a higher probability of being randomly sampled to be parents of the next generation.
This represents selection directly on predicted total additive genetic effects.

Total additive genetic effects are predicted for the first generation of focal individuals and all immi-
grants using equation 1.3 in Mrode (2005, p.3): h2 ∗ (phenotypei−meanpopulationphenotype).
The heritability is either VAf / (VAf + VRf) or VAi / (VAi + VRi). Total additive genetic effects are
predicted for all other individuals using equation 1.9 in Mrode (2005, p. 10) - or as the average of
each individual’s parents’ predicted total additive genetic effects.

Value

A data.frame with columns corresponding to:

id Integer for each individual’s unique identifying code

dam Integer indicating each individual’s dam

sire Integer indicating each individual’s sire

parAvgU Numeric value for the average of each individual’s dam and sire additive genetic effects

mendel Numeric value for each individual’s Mendelian sampling deviate from the mid-parental
total additive genetic value

u Numeric value of each individual’s total additive genetic effect

r Numeric value of each individual’s residual (environmental) deviation

p Numeric value of each individual’s phenotypic value

simGG 55

pred.u Numeric value of each individual’s predicted total additive genetic effect

is Integer of either 0 if an individual was born in the focal population or 1 if they were born in an
immigrant population

gen Integer value of the generation in which each individual was born

Author(s)

<matthewwolak@gmail.com>

References

Verrier, V., J.J. Colleau, and J.L. Foulley. 1993. Long-term effects of selection based on the animal
model BLUP in a finite population. Theoretical and Applied Genetics. 87:446-454.

Mrode, R.A. 2005. Linear Models for the Prediction of Animal Breeding Values, 2nd ed. Cam-
bridge, MA: CABI Publishing.

See Also

ggTutorial

Examples

The dataset 'ggTutorial' was simulated as:
set.seed(102) # seed used to simulate ggTutorial
ggTutorial <- simGG(K = 400, pairs = 200, noff = 4, g = 15,

nimm = 40, nimmG = seq(2, 14, 1),
muf = 0, mui = 3)

Use genetic group methods to approximate the breeding values for ggTutorial
First, construct a pedigree with genetic groups
ggPed <- ggTutorial[, c("id", "dam", "sire", "is", "gen")]
naPar <- which(is.na(ggPed[, 2]))
ggPed$GG <- rep("NA", nrow(ggPed))
'focal' population genetic group = "foc0" and 'immigrant' = "g1"
obtained by pasting "foc" & "g" with immigrant status "0" or "1", respectively
ggPed$GG[naPar] <- as.character(ggPed$is[naPar])
ggPed$GG[ggPed$GG == "0"] <- paste0("foc", ggPed$GG[ggPed$GG == "0"])
ggPed$GG[ggPed$GG == "1"] <- paste0("g", ggPed$GG[ggPed$GG == "1"])

ggPed[naPar, 2:3] <- ggPed[naPar, "GG"]

Now create the Q matrix
Q <- ggcontrib(ggPed[, 1:3], ggroups = c("foc0", "g1"))

obtain the true values of the genetic group means
foc0_mean <- mean(ggTutorial$u[which(ggTutorial$gen == 1 & ggTutorial$is == 0)])
g1_mean <- mean(ggTutorial$u[which(ggTutorial$is == 1)])
g_exp <- matrix(c(foc0_mean, g1_mean), ncol = 1)

breeding values (a) are:

56 simPedDFC

tot. add. gen. effects (u) minus genetic group effects for each individual (Qg):
a <- ggTutorial$u - Q %*% g_exp

simPedDFC Double first cousin pedigree construction

Description

Simulates a pedigree for the “double first cousin” mating design (Fairbairn and Roff 2006).

Usage

simPedDFC(U, gpn = 4, fsn = 4, s = 2, fws = 2, prefix = NULL)

Arguments

U An integer number of units or blocks for the design

gpn Number of grandparent pairs in the generation 0 (GP) (must be >= 2). Equals
the number of full-sib families in generation 1 (P).

fsn Number of offspring in each full-sib family of generations 1 and 2 (P and F1 -
must be an even number >= 4).

s Number of sires per full-sib family in generation 1 (P - must be >=2)

fws Number of generation 1 (P) families with sires. Together, with s, sets up how
cousins and double first cousins are produced

prefix Optional prefix to add to every identity

Details

This is an adaption to a half-sib breeding design which also produces first cousins and double first
cousins. Double first cousins are produced by mating two brothers to two sisters (the offspring of the
resulting two families are double first cousins with one another). This is described in Fairbairn and
Roff (2006) as being particularly effective for separating autosomal additive genetic variance from
sex chromosomal additive genetic variance. It is also amenable to estimating dominance variance,
however, it still has difficulty separating dominance variance from common maternal environmental
variance (Meyer 2008).

For a given unit of the design (U total), 2*gpn 0-generation (grandparental or GP) individuals are
created and paired to make gpn full-sib families. Then the first fws families are each allocated
s males/sires and s*(fws-1) females/dams in the 1 (parental or P) generation. The remaining
(gpn-fws) families (only when: gpn > fws) are assigned s*fws females/dams. If fsn > (s*fws),
the remaining generation 1 (P) individuals in each full-sib family (fsn - (s*fws)) are allocated
to each family with equal numbers of females and males [this allows for more individuals to be
phenotyped in generation 1 (P) than are used to produce generation 2 (F1)]. Generation 2 (F1) is
then assigned, based on the mating design in Fairbairn and Roff (2006) - essentially each sire [of the
s per full-sib family in generation 1 (P)] is mated to a female from each of the other gpn-1 full-sib
families to produce fsn offspring (with equal numbers of females and males).

simPedHS 57

Value

A data.frame with columns corresponding to: id, dam, sire, and sex. Sex is M for males and F for
females.

Author(s)

<matthewwolak@gmail.com>

References

Fairbairn, D.J. and D.A. Roff. 2006. The quantitative genetics of sexual dimorphism: assessing the
importance of sex-linkage. Heredity 97:319-328.

Meyer, K. 2008. Likelihood calculations to evaluate experimental designs to estimate genetic vari-
ances. Heredity 101:212-221.

See Also

simPedHS, warcolak

Examples

DFC1 <- simPedDFC(U = 1, gpn = 2, fsn = 4, s = 2, fws = 2)

simPedHS Half-sib pedigree construction

Description

Simulates a pedigree for a half-sib mating design (sometimes also called the North Carolina Design
1).

Usage

simPedHS(s, d, n, uniqueDname = TRUE, prefix = NULL)

Arguments

s Number of sires

d Number of dams per sire

n Number of offspring per mating (must be > or = 2)

uniqueDname Logical indicating if dams should have unique names within sire families or
throughout the entire pedigree

prefix Optional prefix to add to every identity

58 simPedMCN

Details

n must be greater than or equal to 2, because one male and one female offspring are produced from
each mating

Some functions/calculations get bogged down if no two dams have the same ID in the entire pedi-
gree (e.g., aov). However, other functions must have unique identifiers for every individual.

Value

A data.frame with columns corresponding to: id, dam, sire, and sex. Sex is "M" for males and
"F" for females.

Author(s)

<matthewwolak@gmail.com>

See Also

simPedDFC

Examples

simPedHS(s = 1, d = 3, n = 2)

simPedMCN Middle Class Neighborhood pedigree construction

Description

Simulates a pedigree for the “middle class neighborhood” mating design (Shabalina, Yampolsky,
and Kondrashov 1997).

Usage

simPedMCN(pedTemp, g, Nfam = NULL, noff = 2)

Arguments

pedTemp A data.frame pedigree of a template pedigree from which the middle class
neighborhood design should continue. If NULL, a new pedigree will be created
with Nfam families.

g Integer number of generations to produce from the middle class neighborhood
design

Nfam Integer number of families with which to start a new pedigree following the
middle class neighborhood design.

noff Integer number of full-sib offspring produced by each family (must be >=2).

simPedMCN 59

Details

This creates a pedigree following a breeding design which maintains equal contributions to the next
generation by each family in the design. It effectively removes the effect of natural selection which
makes it amenable to quantify the contribution of mutations to phenotypic variance over the course
of the breeding design.

For a starting pedigree template (pedTemp), the last generation is used as parents to begin the breed-
ing design for the next g generations. The number of families in the last generation of the template
pedigree (pedTemp) will be the number of families in each generation.

Alternatively, if no template pedigree is provided (pedTemp=NULL), Nfam number of families will
be produced in the first generation from Nfam unique sire and Nfam unique dams.

Either pedTemp or Nfam must be NULL, but not both.

Value

A data.frame with columns corresponding to: id, dam, sire, sex, and generation. Sex is M for
males and F for females. The first generation produced in the middle class neighborhood scheme is
assigned a value of “1”, with their parents being assigned to generation 0. If pedTemp was provided,
the generations from this pedigree will be denoted with negative integers.

Author(s)

<matthewwolak@gmail.com>

References

Shabalina, S.A, L.Y. Yampolsky, and A.S. Kondrashov. 1997. Rapid decline of fitness in panmictic
populations of Drosophila melanogaster maintained under relaxed natural selection. Proc. Natl.
Acad. Sci. USA. 94:13034-13039.

See Also

simPedHS, simPedDFC

Examples

No template pedigree provided - start from scrtach
mcn1 <- simPedMCN(pedTemp = NULL, g = 3, Nfam = 4, noff = 2)

Provide a template pedigree (half-sib design)
hsped <- simPedHS(s = 2, d = 2, n = 4)
mcnHS <- simPedMCN(pedTemp = hsped, g = 3)

60 varTrans

sm2list Converts a sparse matrix into a three column format.

Description

From a sparse matrix object, the three column, row ordered lower triangle of non-zero elements is
created. Mostly used within other functions (i.e., makeD)

Usage

sm2list(A, rownames = NULL, colnames = c("row", "column", "A"))

Arguments

A a sparse matrix

rownames a list of rownames from the ’A’ matrix.

colnames the columns will be labeled however they are entered in this character vector

Details

The sparse matrix and three column format must fit CERTAIN assumptions about row/column sort-
ing and lower/upper triangle matrix.

Adapted from a function in the MCMCglmm package

Value

returns the list form of the sparse matrix as a data.frame

See Also

MCMCglmm

varTrans Transforms ASReml-R gamma sampling variances to component scale

Description

The inverse of the Average Information matrix in an ASReml-R object produces the sampling vari-
ances of the (co)variance components on the gamma scale. This function scales these variances
to the original component scale. This allows for Confidence Intervals to be constructed about the
variance component estimates.

Usage

varTrans(asr.object)

warcolak 61

Arguments

asr.object Object from a call to asreml

Value

Returns a numeric vector of variances for each variance component in an ASReml-R model.

Author(s)

<matthewwolak@gmail.com>

Examples

Not run:
library(asreml)
ginvA <- ainverse(warcolak)
ginvD <- makeD(warcolak[, 1:3])$listDinv

attr(ginvD, "rowNames") <- as.character(warcolak[, 1])
attr(ginvD, "INVERSE") <- TRUE

warcolak$IDD <- warcolak$ID
warcolak.mod <- asreml(trait1 ~ sex,
random = ~ vm(ID, ginvA) + vm(IDD, ginvD),

data = warcolak)
summary(warcolak.mod)$varcomp
sqrt(varTrans(warcolak.mod)) # sqrt() so can compare with standard errors from summary

End(Not run)

warcolak Pedigree and phenotypic values for a mythical population of Warco-
laks

Description

A two trait example pedigree from the three generation breeding design of Fairbairn & Roff (2006)
with two uncorrelated traits.

Usage

warcolak

Format

A data.frame with 5400 observations on the following 13 variables:

ID a factor specifying 5400 unique individual identities

Dam a factor specifying the unique Dam for each individual

62 warcolak

Sire a factor specifying the unique Sire for each individual
sex a factor specifying “M” if the individual is a male and “F” if it is a female
trait1 a numeric vector of phenotypic values: see ‘Details’
trait2 a numeric vector of phenotypic values: see ‘Details’
t1_a a numeric vector of the autosomal additive genetic effects underlying ‘trait1’
t2_a a numeric vector of the autosomal additive genetic effects underlying ‘trait2’
t2_s a numeric vector of the sex-chromosomal additive genetic effects underlying ‘trait2’
t1_d a numeric vector of the autosomal dominance genetic effects underlying ‘trait1’
t2_d a numeric vector of the autosomal dominance genetic effects underlying ‘trait2’
t2_r a numeric vector of the residual (environmental) effects underlying ‘trait1’
t2_r a numeric vector of the residual (environmental) effects underlying ‘trait2’

Details

Unique sets of relatives are specified for a three generation breeding design (Fairbairn & Roff,
2006). Each set contains 72 individuals. This pedigree reflects an experiment which produces 75 of
these basic sets from Fairbairn & Roff’s design. The pedigree was created using simPedDFC().

The dataset was simulated to have two uncorrelated traits with different genetic architectures (see
examples below). The trait means are both equal to 1 for males and 2 for females. The additive
genetic, dominance genetic, and environmental (or residual) variances for both trait1 and trait2
are 0.4, 0.3, & 0.3, respectively. However, the additive genetic variance for trait2 can be further
decomposed to autosomal additive genetic variance (0.3) and X-linked additive genetic variance
(0.1; assuming the ‘no global dosage compensation’ mechanism).

Females and males have equal variances (except for sex-chromosomal additive genetic variance,
where by definition, males have half of the additive genetic variance as females; Wolak 2013) and
a between-sex correlation of one for all genetic and residual effects (except the cross-sex residual
covariance=0). All random effects were drawn from multivariate random normal distributions [e.g.,
autosomal additive genetic effects: N ~ (0, kronecker(A, G))] with means of zero and (co)variances
equal to the product of the expected sex-specific (co)variances (e.g., G) and the relatedness (or
incidence) matrix (e.g., A).

The actual variance in random effects will vary slightly from the amount specified in the simulation,
because of Monte Carlo error. Thus, the random effects have been included as separate columns in
the dataset. See examples below for the code that generated the dataset.

Note

Before nadiv version 2.14.0, the warcolak dataset used a 0/1 coding for ‘sex’ and did not contain
the random effects.

References

Fairbairn, D.J. & Roff, D.A. 2006. The quantitative genetics of sexual dimorphism: assessing the
importance of sex-linkage. Heredity 97, 319-328.

Wolak, M.E. 2013. The Quantitative Genetics of Sexual Differences: New Methodologies and an
Empirical Investigation of Sex-Linked, Sex-Specific, Non-Additive, and Epigenetic Effects. Ph.D.
Dissertation. University of California Riverside.

warcolak 63

Examples

set.seed(101)
library(nadiv)
create pedigree
warcolak <- simPedDFC(U = 75, gpn = 4, fsn = 4, s = 2)
names(warcolak)[1:3] <- c("ID", "Dam", "Sire")
warcolak$trait2 <- warcolak$trait1 <- NA

Define covariance matrices for random effects:
Autosomal additive genetic (trait1)
Ga_t1 <- matrix(c(0.4, rep(0.399999, 2), 0.4), 2, 2)
Autosomal additive genetic (trait2)
Ga_t2 <- matrix(c(0.3, rep(0.299999, 2), 0.3), 2, 2)
Sex-chromosomal additive genetic (trait2)
Gs_t2 <- matrix(c(0.1, rep(0.099999, 2), 0.1), 2, 2)
Autosomal dominance genetic
Gd <- matrix(c(0.3, rep(0.299999, 2), 0.3), 2, 2)
Environmental (or residual)
Assumes no correlated environmental effects between sexes
R <- diag(c(0.3, 0.3))

define variables to be re-used
pedn <- nrow(warcolak)
Female (homogametic sex chromosomes) in first column
Male (heterogametic sex chromosomes) in second column
sexcol <- as.integer(warcolak$sex)

Create random effects
Additive genetic
trait1 autosomal
tmp_a <- grfx(pedn, G = Ga_t1, incidence = makeA(warcolak[, 1:3]))

var(tmp_a)
warcolak$t1_a <- tmp_a[cbind(seq(pedn), sexcol)]
trait2 autosomal
tmp_a <- grfx(pedn, G = Ga_t2, incidence = makeA(warcolak[, 1:3]))

var(tmp_a)
warcolak$t2_a <- tmp_a[cbind(seq(pedn), sexcol)]
trait2 sex-chromosomal
tmp_s <- grfx(pedn, G = Gs_t2, incidence = makeS(warcolak[, 1:4],
heterogametic = "M", DosageComp = "ngdc", returnS = TRUE)$S)

matrix(c(var(tmp_s[which(sexcol == 1), 1]),
rep(cov(tmp_s)[2, 1], 2), var(tmp_s[which(sexcol == 2), 2])), 2, 2)

NOTE above should be: covar = male var = 0.5* female var
warcolak$t2_s <- tmp_s[cbind(seq(pedn), sexcol)]

Dominance genetic
trait1
tmp_d <- grfx(pedn, G = Gd, incidence = makeD(warcolak[, 1:3], invertD = FALSE)$D)

var(tmp_d)
warcolak$t1_d <- tmp_d[cbind(seq(pedn), sexcol)]
trait2

64 Wray90

tmp_d <- grfx(pedn, G = Gd, incidence = makeD(warcolak[, 1:3], invertD = FALSE)$D)
var(tmp_d)

warcolak$t2_d <- tmp_d[cbind(seq(pedn), sexcol)]

Residual
trait1
tmp_r <- grfx(pedn, G = R, incidence = NULL) # warning of identity matrix

var(tmp_r)
warcolak$t1_r <- tmp_r[cbind(seq(pedn), sexcol)]
trait2
tmp_r <- grfx(pedn, G = R, incidence = NULL) # warning of identity matrix

var(tmp_r)
warcolak$t2_r <- tmp_r[cbind(seq(pedn), sexcol)]

Sum random effects and add sex-specific means to get phenotypes
females have slightly greater mean trait values
warcolak$trait1 <- 1 + (-1*sexcol + 2) + rowSums(warcolak[, c("t1_a", "t1_d", "t1_r")])
warcolak$trait2 <- 1 + (-1*sexcol + 2) + rowSums(warcolak[, c("t2_a", "t2_s", "t2_d", "t2_r")])

Wray90 Pedigree, adapted from Wray (1990)

Description

Pedigree, adapted from Wray (1990)

Usage

Wray90

Format

A data frame with 8 observations on the following 4 variables:

id a numeric vector
dam a numeric vector
sire a numeric vector
time a numeric vector

Source

Wray, N.A. 1990. Accounting for mutation effects in the additive genetic variance-covariance ma-
trix and its inverse. Biometrics. 46:177-186.

Examples

data(Wray90)
str(Wray90)

Index

∗ datasets
F2009, 9
FG90, 10
ggTutorial, 18
Mrode2, 44
Mrode3, 45
Mrode9, 45
Q1988, 51
warcolak, 61
Wray90, 64

[, 46, 47

aic, 3
aiCI, 4
aiFun, 5, 5

constrainFun, 7, 22

drfx, 8, 20

F2009, 9
FG90, 10
findDFC, 10
founderLine, 11

genAssign, 13, 49
geneDrop, 14
ggcontrib, 15, 30
ggTutorial, 18, 55
grfx, 8, 19

LRTest, 8, 21

makeA, 20, 23, 24, 28, 35, 38, 43
makeAA, 20, 24, 34, 35
makeAinv, 23, 25, 29, 30, 43
makeAstarMult, 28, 29
makeD, 20, 23, 31, 34, 35, 37
makeDiiF (makeTinv), 42
makeDomEpi, 20, 34
makeDsim, 15, 20, 33, 35

makeGGAinv (makeAinv), 25
makeM, 38
makeMinv, 38, 39
makeMinvML (makeMinv), 39
makeS, 20, 23, 38, 40
makeSd, 37
makeSd (makeD), 31
makeSdsim, 33
makeSdsim (makeDsim), 35
makeT (makeTinv), 42
makeTinv, 42
MCMCglmm, 20, 47, 60
Mrode2, 44
Mrode3, 45
Mrode9, 45

nadiv (nadiv-package), 3
nadiv-package, 3
numPed, 46

pcc, 47
prepPed, 46, 47, 48, 51
prunePed, 49, 50

Q1988, 51

ronPed (numPed), 46

simGG, 18, 19, 52
simPedDFC, 56, 58, 59
simPedHS, 57, 57, 59
simPedMCN, 58
sm2list, 60

varTrans, 4, 60

warcolak, 57, 61
Wray90, 64

65

	nadiv-package
	aic
	aiCI
	aiFun
	constrainFun
	drfx
	F2009
	FG90
	findDFC
	founderLine
	genAssign
	geneDrop
	ggcontrib
	ggTutorial
	grfx
	LRTest
	makeA
	makeAA
	makeAinv
	makeAstarMult
	makeD
	makeDomEpi
	makeDsim
	makeM
	makeMinv
	makeS
	makeTinv
	Mrode2
	Mrode3
	Mrode9
	numPed
	pcc
	prepPed
	prunePed
	Q1988
	simGG
	simPedDFC
	simPedHS
	simPedMCN
	sm2list
	varTrans
	warcolak
	Wray90
	Index

